A novel hybrid deep correction approach for electrical load demand prediction
•The high demand of proper tool for load forecasting (LF) .•Suggest a creative hybrid deep estimation model for short term LF.•Use of machine learning and wavelet package for LF.•Utilizing the wavelet transform to decompose the residual component. Based on technical reports, the high demand of prope...
Gespeichert in:
Veröffentlicht in: | Sustainable cities and society 2021-11, Vol.74, p.103161, Article 103161 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103161 |
container_title | Sustainable cities and society |
container_volume | 74 |
creator | Yu, Fuhua Yue, Qi Yunianta, Arda Aljahdali, Hani Moaiteq Abdullah |
description | •The high demand of proper tool for load forecasting (LF) .•Suggest a creative hybrid deep estimation model for short term LF.•Use of machine learning and wavelet package for LF.•Utilizing the wavelet transform to decompose the residual component.
Based on technical reports, the high demand of proper tool for load forecasting (LF) and precise planning in recent combative and challenging markets of electrical energy is highly uprising. Therefore, this paper intends to suggest a creative hybrid deep estimation model for short term LF (STLF) using Generative Adversarial Network (GAN), Auto-Regressive Integrated Moving Average (ARIMA) and wavelet package. To get the stationary behavior, the time series in non-stationary behavior case would be differenced in the required number of times. The appropriate order for the model of ARIMA is found using Akaike Information Criterion (AIC). When the linear part of the electrical demand time series is captured by ARIMA, the remaining nonlinear part would be hard to model. The discrete wavelet transform would be utilized to decompose the residual nonlinear component into its sub-frequencies. To estimate the future nonlinear samples, several GAN models are then applied to approximation and detail components of residual signal. Finally, the results of GAN and ARIMA models would be added together to construct the final signal. The observed experimental results indicate the proper improvement of the proposed accurate LF model. |
doi_str_mv | 10.1016/j.scs.2021.103161 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000725256500003CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221067072100442X</els_id><sourcerecordid>S221067072100442X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-b91103b2d7f257fcc510ee6f8584eb8b9a59d3eb6f7052e2d4c0f9779221dd8a3</originalsourceid><addsrcrecordid>eNqNkU9rwyAchmVssNL1A-zmfaRTU2PCTqXsH3Tssp3F6E9qSWPQrKPffmYpPexQlotR3kdfHxG6pWROCS3ut_Oo45wRRtM8pwW9QBPGKMkKQfnl6Z-IazSLcUvSxwtaLfgEvS1x6_fQ4M2hDs5gA9Bh7UMA3TvfYtV1wSu9wdYHDE1aDU6rBjdeDeGdag3uAhj3G79BV1Y1EWbHcYo-nx4_Vi_Z-v35dbVcZ5pVos_qiqaeNTPCMi6s1pwSgMKWvFxAXdaV4pXJoS6sIJwBMwtNbCVElS5iTKnyKaLjvjr4GANY2QW3U-EgKZGDErmVSYkclMhRSWLEH0a7Xg2t-6Bcc5a8G8lvqL2N2kGr4XRikikYZ7zgg9c8pcv_p1fHCiv_1fYJfRhRSO72DoI84sYN7yGNd2dq_gBrRZyD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel hybrid deep correction approach for electrical load demand prediction</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yu, Fuhua ; Yue, Qi ; Yunianta, Arda ; Aljahdali, Hani Moaiteq Abdullah</creator><creatorcontrib>Yu, Fuhua ; Yue, Qi ; Yunianta, Arda ; Aljahdali, Hani Moaiteq Abdullah</creatorcontrib><description>•The high demand of proper tool for load forecasting (LF) .•Suggest a creative hybrid deep estimation model for short term LF.•Use of machine learning and wavelet package for LF.•Utilizing the wavelet transform to decompose the residual component.
Based on technical reports, the high demand of proper tool for load forecasting (LF) and precise planning in recent combative and challenging markets of electrical energy is highly uprising. Therefore, this paper intends to suggest a creative hybrid deep estimation model for short term LF (STLF) using Generative Adversarial Network (GAN), Auto-Regressive Integrated Moving Average (ARIMA) and wavelet package. To get the stationary behavior, the time series in non-stationary behavior case would be differenced in the required number of times. The appropriate order for the model of ARIMA is found using Akaike Information Criterion (AIC). When the linear part of the electrical demand time series is captured by ARIMA, the remaining nonlinear part would be hard to model. The discrete wavelet transform would be utilized to decompose the residual nonlinear component into its sub-frequencies. To estimate the future nonlinear samples, several GAN models are then applied to approximation and detail components of residual signal. Finally, the results of GAN and ARIMA models would be added together to construct the final signal. The observed experimental results indicate the proper improvement of the proposed accurate LF model.</description><identifier>ISSN: 2210-6707</identifier><identifier>EISSN: 2210-6715</identifier><identifier>DOI: 10.1016/j.scs.2021.103161</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier Ltd</publisher><subject><![CDATA[Construction & Building Technology ; Electrical load demand ; Energy & Fuels ; Estimation and modeling ; Generative adversarial network (GAN) ; Green & Sustainable Science & Technology ; Science & Technology ; Science & Technology - Other Topics ; Technology ; Wavelet package]]></subject><ispartof>Sustainable cities and society, 2021-11, Vol.74, p.103161, Article 103161</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000725256500003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c297t-b91103b2d7f257fcc510ee6f8584eb8b9a59d3eb6f7052e2d4c0f9779221dd8a3</citedby><cites>FETCH-LOGICAL-c297t-b91103b2d7f257fcc510ee6f8584eb8b9a59d3eb6f7052e2d4c0f9779221dd8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scs.2021.103161$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Yu, Fuhua</creatorcontrib><creatorcontrib>Yue, Qi</creatorcontrib><creatorcontrib>Yunianta, Arda</creatorcontrib><creatorcontrib>Aljahdali, Hani Moaiteq Abdullah</creatorcontrib><title>A novel hybrid deep correction approach for electrical load demand prediction</title><title>Sustainable cities and society</title><addtitle>SUSTAIN CITIES SOC</addtitle><description>•The high demand of proper tool for load forecasting (LF) .•Suggest a creative hybrid deep estimation model for short term LF.•Use of machine learning and wavelet package for LF.•Utilizing the wavelet transform to decompose the residual component.
Based on technical reports, the high demand of proper tool for load forecasting (LF) and precise planning in recent combative and challenging markets of electrical energy is highly uprising. Therefore, this paper intends to suggest a creative hybrid deep estimation model for short term LF (STLF) using Generative Adversarial Network (GAN), Auto-Regressive Integrated Moving Average (ARIMA) and wavelet package. To get the stationary behavior, the time series in non-stationary behavior case would be differenced in the required number of times. The appropriate order for the model of ARIMA is found using Akaike Information Criterion (AIC). When the linear part of the electrical demand time series is captured by ARIMA, the remaining nonlinear part would be hard to model. The discrete wavelet transform would be utilized to decompose the residual nonlinear component into its sub-frequencies. To estimate the future nonlinear samples, several GAN models are then applied to approximation and detail components of residual signal. Finally, the results of GAN and ARIMA models would be added together to construct the final signal. The observed experimental results indicate the proper improvement of the proposed accurate LF model.</description><subject>Construction & Building Technology</subject><subject>Electrical load demand</subject><subject>Energy & Fuels</subject><subject>Estimation and modeling</subject><subject>Generative adversarial network (GAN)</subject><subject>Green & Sustainable Science & Technology</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><subject>Wavelet package</subject><issn>2210-6707</issn><issn>2210-6715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU9rwyAchmVssNL1A-zmfaRTU2PCTqXsH3Tssp3F6E9qSWPQrKPffmYpPexQlotR3kdfHxG6pWROCS3ut_Oo45wRRtM8pwW9QBPGKMkKQfnl6Z-IazSLcUvSxwtaLfgEvS1x6_fQ4M2hDs5gA9Bh7UMA3TvfYtV1wSu9wdYHDE1aDU6rBjdeDeGdag3uAhj3G79BV1Y1EWbHcYo-nx4_Vi_Z-v35dbVcZ5pVos_qiqaeNTPCMi6s1pwSgMKWvFxAXdaV4pXJoS6sIJwBMwtNbCVElS5iTKnyKaLjvjr4GANY2QW3U-EgKZGDErmVSYkclMhRSWLEH0a7Xg2t-6Bcc5a8G8lvqL2N2kGr4XRikikYZ7zgg9c8pcv_p1fHCiv_1fYJfRhRSO72DoI84sYN7yGNd2dq_gBrRZyD</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Yu, Fuhua</creator><creator>Yue, Qi</creator><creator>Yunianta, Arda</creator><creator>Aljahdali, Hani Moaiteq Abdullah</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202111</creationdate><title>A novel hybrid deep correction approach for electrical load demand prediction</title><author>Yu, Fuhua ; Yue, Qi ; Yunianta, Arda ; Aljahdali, Hani Moaiteq Abdullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-b91103b2d7f257fcc510ee6f8584eb8b9a59d3eb6f7052e2d4c0f9779221dd8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Construction & Building Technology</topic><topic>Electrical load demand</topic><topic>Energy & Fuels</topic><topic>Estimation and modeling</topic><topic>Generative adversarial network (GAN)</topic><topic>Green & Sustainable Science & Technology</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><topic>Wavelet package</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Fuhua</creatorcontrib><creatorcontrib>Yue, Qi</creatorcontrib><creatorcontrib>Yunianta, Arda</creatorcontrib><creatorcontrib>Aljahdali, Hani Moaiteq Abdullah</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Sustainable cities and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Fuhua</au><au>Yue, Qi</au><au>Yunianta, Arda</au><au>Aljahdali, Hani Moaiteq Abdullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel hybrid deep correction approach for electrical load demand prediction</atitle><jtitle>Sustainable cities and society</jtitle><stitle>SUSTAIN CITIES SOC</stitle><date>2021-11</date><risdate>2021</risdate><volume>74</volume><spage>103161</spage><pages>103161-</pages><artnum>103161</artnum><issn>2210-6707</issn><eissn>2210-6715</eissn><abstract>•The high demand of proper tool for load forecasting (LF) .•Suggest a creative hybrid deep estimation model for short term LF.•Use of machine learning and wavelet package for LF.•Utilizing the wavelet transform to decompose the residual component.
Based on technical reports, the high demand of proper tool for load forecasting (LF) and precise planning in recent combative and challenging markets of electrical energy is highly uprising. Therefore, this paper intends to suggest a creative hybrid deep estimation model for short term LF (STLF) using Generative Adversarial Network (GAN), Auto-Regressive Integrated Moving Average (ARIMA) and wavelet package. To get the stationary behavior, the time series in non-stationary behavior case would be differenced in the required number of times. The appropriate order for the model of ARIMA is found using Akaike Information Criterion (AIC). When the linear part of the electrical demand time series is captured by ARIMA, the remaining nonlinear part would be hard to model. The discrete wavelet transform would be utilized to decompose the residual nonlinear component into its sub-frequencies. To estimate the future nonlinear samples, several GAN models are then applied to approximation and detail components of residual signal. Finally, the results of GAN and ARIMA models would be added together to construct the final signal. The observed experimental results indicate the proper improvement of the proposed accurate LF model.</abstract><cop>AMSTERDAM</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.scs.2021.103161</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2210-6707 |
ispartof | Sustainable cities and society, 2021-11, Vol.74, p.103161, Article 103161 |
issn | 2210-6707 2210-6715 |
language | eng |
recordid | cdi_webofscience_primary_000725256500003CitationCount |
source | Access via ScienceDirect (Elsevier) |
subjects | Construction & Building Technology Electrical load demand Energy & Fuels Estimation and modeling Generative adversarial network (GAN) Green & Sustainable Science & Technology Science & Technology Science & Technology - Other Topics Technology Wavelet package |
title | A novel hybrid deep correction approach for electrical load demand prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20hybrid%20deep%20correction%20approach%20for%20electrical%20load%20demand%20prediction&rft.jtitle=Sustainable%20cities%20and%20society&rft.au=Yu,%20Fuhua&rft.date=2021-11&rft.volume=74&rft.spage=103161&rft.pages=103161-&rft.artnum=103161&rft.issn=2210-6707&rft.eissn=2210-6715&rft_id=info:doi/10.1016/j.scs.2021.103161&rft_dat=%3Celsevier_webof%3ES221067072100442X%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S221067072100442X&rfr_iscdi=true |