Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches

The DEA is a nonparametric method of assessing the efficiency of decision-making units using mathematical programming. The classic DEA model assumes that input and output variables are deterministic. However, there are many applications where the variables are of a stochastic nature. Based on the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economic analysis and policy 2021-12, Vol.72, p.326-341
Hauptverfasser: Balak, Sima, Behzadi, Mohammad Hassan, Nazari, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 341
container_issue
container_start_page 326
container_title Economic analysis and policy
container_volume 72
creator Balak, Sima
Behzadi, Mohammad Hassan
Nazari, Ali
description The DEA is a nonparametric method of assessing the efficiency of decision-making units using mathematical programming. The classic DEA model assumes that input and output variables are deterministic. However, there are many applications where the variables are of a stochastic nature. Based on the consideration of input and output levels as random variables, the Stochastic Data Envelopment Analysis (SDEA) was developed. Statistical distributions therefore play a major role in this regard. By considering the dependency between input and output variables, and also their simultaneous dependencies in this study, we have introduced three copula-SCCR models. We used three copulas of Gaussian, Clayton, and Gumbel to estimate the dependence between the random variables with normal distribution. We evaluated the proposed models using real data from 20 bank branches. The results showed that considering stochastic dependency between the inputs or outputs causes different results. A comparison between the Copula-SCCR models and the SCCR models revealed that the efficiency of the DMUs using the Copula-SCCR models differed from the SCCR model by a significant margin of at least 20%.
doi_str_mv 10.1016/j.eap.2021.09.002
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000724791700024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S031359262100120X</els_id><sourcerecordid>S031359262100120X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-aac445c4bdc97187760b8fb60c2657975d997c7684a16cf9f163637fb3dba09a3</originalsourceid><addsrcrecordid>eNqNkD1v3DAMhj20QNOkP6Cb9sIu5Q_p1E6Hy0cLBMiQdhYkisbp6liGpEuQIf89ul6QMchEEuDzgnyq6iuHhgMX33cNmaVpoeUNqAag_VCdQMe7elCt-FR9TmkHwNXQq5Pq6TYH3JqUPTIMy34y9fnFmt0FRxOzJpFjYWZ5S8zRQrOjGYmlHPeY95FYGMvwGnBvojd2ovSDrWdmlmXyaLI_BASWH2jOjyVz_sdsNDNuKZ1VH0czJfryUk-rv5cXfza_6uubq9-b9XWNXQe5Ngb7fsDeOlSSr6QUYFejFYCtGKSSg1NKohSr3nCBoxq56EQnR9s5a0CZ7rTix1yMIaVIo16ivzPxUXPQB2d6p4szfXCmQenirDDfjswD2TAm9IfXXzkAkG0vFZela_uyvXr_9sbn_1o2YT_ngv48olQM3HuK-gV3PhJm7YJ_48xneUmZWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches</title><source>Web of Science - Social Sciences Citation Index – 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Balak, Sima ; Behzadi, Mohammad Hassan ; Nazari, Ali</creator><creatorcontrib>Balak, Sima ; Behzadi, Mohammad Hassan ; Nazari, Ali</creatorcontrib><description>The DEA is a nonparametric method of assessing the efficiency of decision-making units using mathematical programming. The classic DEA model assumes that input and output variables are deterministic. However, there are many applications where the variables are of a stochastic nature. Based on the consideration of input and output levels as random variables, the Stochastic Data Envelopment Analysis (SDEA) was developed. Statistical distributions therefore play a major role in this regard. By considering the dependency between input and output variables, and also their simultaneous dependencies in this study, we have introduced three copula-SCCR models. We used three copulas of Gaussian, Clayton, and Gumbel to estimate the dependence between the random variables with normal distribution. We evaluated the proposed models using real data from 20 bank branches. The results showed that considering stochastic dependency between the inputs or outputs causes different results. A comparison between the Copula-SCCR models and the SCCR models revealed that the efficiency of the DMUs using the Copula-SCCR models differed from the SCCR model by a significant margin of at least 20%.</description><identifier>ISSN: 0313-5926</identifier><identifier>DOI: 10.1016/j.eap.2021.09.002</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Business &amp; Economics ; Copula ; Dependency structure ; Economics ; Normal distribution ; Social Sciences ; Stochastic Data Envelopment Analysis</subject><ispartof>Economic analysis and policy, 2021-12, Vol.72, p.326-341</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000724791700024</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c330t-aac445c4bdc97187760b8fb60c2657975d997c7684a16cf9f163637fb3dba09a3</citedby><cites>FETCH-LOGICAL-c330t-aac445c4bdc97187760b8fb60c2657975d997c7684a16cf9f163637fb3dba09a3</cites><orcidid>0000-0002-1849-5588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39262</link.rule.ids></links><search><creatorcontrib>Balak, Sima</creatorcontrib><creatorcontrib>Behzadi, Mohammad Hassan</creatorcontrib><creatorcontrib>Nazari, Ali</creatorcontrib><title>Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches</title><title>Economic analysis and policy</title><addtitle>ECON ANAL POLICY</addtitle><description>The DEA is a nonparametric method of assessing the efficiency of decision-making units using mathematical programming. The classic DEA model assumes that input and output variables are deterministic. However, there are many applications where the variables are of a stochastic nature. Based on the consideration of input and output levels as random variables, the Stochastic Data Envelopment Analysis (SDEA) was developed. Statistical distributions therefore play a major role in this regard. By considering the dependency between input and output variables, and also their simultaneous dependencies in this study, we have introduced three copula-SCCR models. We used three copulas of Gaussian, Clayton, and Gumbel to estimate the dependence between the random variables with normal distribution. We evaluated the proposed models using real data from 20 bank branches. The results showed that considering stochastic dependency between the inputs or outputs causes different results. A comparison between the Copula-SCCR models and the SCCR models revealed that the efficiency of the DMUs using the Copula-SCCR models differed from the SCCR model by a significant margin of at least 20%.</description><subject>Business &amp; Economics</subject><subject>Copula</subject><subject>Dependency structure</subject><subject>Economics</subject><subject>Normal distribution</subject><subject>Social Sciences</subject><subject>Stochastic Data Envelopment Analysis</subject><issn>0313-5926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><recordid>eNqNkD1v3DAMhj20QNOkP6Cb9sIu5Q_p1E6Hy0cLBMiQdhYkisbp6liGpEuQIf89ul6QMchEEuDzgnyq6iuHhgMX33cNmaVpoeUNqAag_VCdQMe7elCt-FR9TmkHwNXQq5Pq6TYH3JqUPTIMy34y9fnFmt0FRxOzJpFjYWZ5S8zRQrOjGYmlHPeY95FYGMvwGnBvojd2ovSDrWdmlmXyaLI_BASWH2jOjyVz_sdsNDNuKZ1VH0czJfryUk-rv5cXfza_6uubq9-b9XWNXQe5Ngb7fsDeOlSSr6QUYFejFYCtGKSSg1NKohSr3nCBoxq56EQnR9s5a0CZ7rTix1yMIaVIo16ivzPxUXPQB2d6p4szfXCmQenirDDfjswD2TAm9IfXXzkAkG0vFZela_uyvXr_9sbn_1o2YT_ngv48olQM3HuK-gV3PhJm7YJ_48xneUmZWw</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Balak, Sima</creator><creator>Behzadi, Mohammad Hassan</creator><creator>Nazari, Ali</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>17B</scope><scope>BLEPL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1849-5588</orcidid></search><sort><creationdate>202112</creationdate><title>Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches</title><author>Balak, Sima ; Behzadi, Mohammad Hassan ; Nazari, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-aac445c4bdc97187760b8fb60c2657975d997c7684a16cf9f163637fb3dba09a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Business &amp; Economics</topic><topic>Copula</topic><topic>Dependency structure</topic><topic>Economics</topic><topic>Normal distribution</topic><topic>Social Sciences</topic><topic>Stochastic Data Envelopment Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balak, Sima</creatorcontrib><creatorcontrib>Behzadi, Mohammad Hassan</creatorcontrib><creatorcontrib>Nazari, Ali</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>CrossRef</collection><jtitle>Economic analysis and policy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balak, Sima</au><au>Behzadi, Mohammad Hassan</au><au>Nazari, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches</atitle><jtitle>Economic analysis and policy</jtitle><stitle>ECON ANAL POLICY</stitle><date>2021-12</date><risdate>2021</risdate><volume>72</volume><spage>326</spage><epage>341</epage><pages>326-341</pages><issn>0313-5926</issn><abstract>The DEA is a nonparametric method of assessing the efficiency of decision-making units using mathematical programming. The classic DEA model assumes that input and output variables are deterministic. However, there are many applications where the variables are of a stochastic nature. Based on the consideration of input and output levels as random variables, the Stochastic Data Envelopment Analysis (SDEA) was developed. Statistical distributions therefore play a major role in this regard. By considering the dependency between input and output variables, and also their simultaneous dependencies in this study, we have introduced three copula-SCCR models. We used three copulas of Gaussian, Clayton, and Gumbel to estimate the dependence between the random variables with normal distribution. We evaluated the proposed models using real data from 20 bank branches. The results showed that considering stochastic dependency between the inputs or outputs causes different results. A comparison between the Copula-SCCR models and the SCCR models revealed that the efficiency of the DMUs using the Copula-SCCR models differed from the SCCR model by a significant margin of at least 20%.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eap.2021.09.002</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1849-5588</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0313-5926
ispartof Economic analysis and policy, 2021-12, Vol.72, p.326-341
issn 0313-5926
language eng
recordid cdi_webofscience_primary_000724791700024
source Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Business & Economics
Copula
Dependency structure
Economics
Normal distribution
Social Sciences
Stochastic Data Envelopment Analysis
title Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20copula-DEA%20model%20based%20on%20the%20dependence%20structure%20of%20stochastic%20variables:%20An%20application%20to%20twenty%20bank%20branches&rft.jtitle=Economic%20analysis%20and%20policy&rft.au=Balak,%20Sima&rft.date=2021-12&rft.volume=72&rft.spage=326&rft.epage=341&rft.pages=326-341&rft.issn=0313-5926&rft_id=info:doi/10.1016/j.eap.2021.09.002&rft_dat=%3Celsevier_webof%3ES031359262100120X%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S031359262100120X&rfr_iscdi=true