Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches
The DEA is a nonparametric method of assessing the efficiency of decision-making units using mathematical programming. The classic DEA model assumes that input and output variables are deterministic. However, there are many applications where the variables are of a stochastic nature. Based on the co...
Gespeichert in:
Veröffentlicht in: | Economic analysis and policy 2021-12, Vol.72, p.326-341 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 341 |
---|---|
container_issue | |
container_start_page | 326 |
container_title | Economic analysis and policy |
container_volume | 72 |
creator | Balak, Sima Behzadi, Mohammad Hassan Nazari, Ali |
description | The DEA is a nonparametric method of assessing the efficiency of decision-making units using mathematical programming. The classic DEA model assumes that input and output variables are deterministic. However, there are many applications where the variables are of a stochastic nature. Based on the consideration of input and output levels as random variables, the Stochastic Data Envelopment Analysis (SDEA) was developed. Statistical distributions therefore play a major role in this regard. By considering the dependency between input and output variables, and also their simultaneous dependencies in this study, we have introduced three copula-SCCR models. We used three copulas of Gaussian, Clayton, and Gumbel to estimate the dependence between the random variables with normal distribution. We evaluated the proposed models using real data from 20 bank branches. The results showed that considering stochastic dependency between the inputs or outputs causes different results. A comparison between the Copula-SCCR models and the SCCR models revealed that the efficiency of the DMUs using the Copula-SCCR models differed from the SCCR model by a significant margin of at least 20%. |
doi_str_mv | 10.1016/j.eap.2021.09.002 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000724791700024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S031359262100120X</els_id><sourcerecordid>S031359262100120X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-aac445c4bdc97187760b8fb60c2657975d997c7684a16cf9f163637fb3dba09a3</originalsourceid><addsrcrecordid>eNqNkD1v3DAMhj20QNOkP6Cb9sIu5Q_p1E6Hy0cLBMiQdhYkisbp6liGpEuQIf89ul6QMchEEuDzgnyq6iuHhgMX33cNmaVpoeUNqAag_VCdQMe7elCt-FR9TmkHwNXQq5Pq6TYH3JqUPTIMy34y9fnFmt0FRxOzJpFjYWZ5S8zRQrOjGYmlHPeY95FYGMvwGnBvojd2ovSDrWdmlmXyaLI_BASWH2jOjyVz_sdsNDNuKZ1VH0czJfryUk-rv5cXfza_6uubq9-b9XWNXQe5Ngb7fsDeOlSSr6QUYFejFYCtGKSSg1NKohSr3nCBoxq56EQnR9s5a0CZ7rTix1yMIaVIo16ivzPxUXPQB2d6p4szfXCmQenirDDfjswD2TAm9IfXXzkAkG0vFZela_uyvXr_9sbn_1o2YT_ngv48olQM3HuK-gV3PhJm7YJ_48xneUmZWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches</title><source>Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Balak, Sima ; Behzadi, Mohammad Hassan ; Nazari, Ali</creator><creatorcontrib>Balak, Sima ; Behzadi, Mohammad Hassan ; Nazari, Ali</creatorcontrib><description>The DEA is a nonparametric method of assessing the efficiency of decision-making units using mathematical programming. The classic DEA model assumes that input and output variables are deterministic. However, there are many applications where the variables are of a stochastic nature. Based on the consideration of input and output levels as random variables, the Stochastic Data Envelopment Analysis (SDEA) was developed. Statistical distributions therefore play a major role in this regard. By considering the dependency between input and output variables, and also their simultaneous dependencies in this study, we have introduced three copula-SCCR models. We used three copulas of Gaussian, Clayton, and Gumbel to estimate the dependence between the random variables with normal distribution. We evaluated the proposed models using real data from 20 bank branches. The results showed that considering stochastic dependency between the inputs or outputs causes different results. A comparison between the Copula-SCCR models and the SCCR models revealed that the efficiency of the DMUs using the Copula-SCCR models differed from the SCCR model by a significant margin of at least 20%.</description><identifier>ISSN: 0313-5926</identifier><identifier>DOI: 10.1016/j.eap.2021.09.002</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Business & Economics ; Copula ; Dependency structure ; Economics ; Normal distribution ; Social Sciences ; Stochastic Data Envelopment Analysis</subject><ispartof>Economic analysis and policy, 2021-12, Vol.72, p.326-341</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000724791700024</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c330t-aac445c4bdc97187760b8fb60c2657975d997c7684a16cf9f163637fb3dba09a3</citedby><cites>FETCH-LOGICAL-c330t-aac445c4bdc97187760b8fb60c2657975d997c7684a16cf9f163637fb3dba09a3</cites><orcidid>0000-0002-1849-5588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39262</link.rule.ids></links><search><creatorcontrib>Balak, Sima</creatorcontrib><creatorcontrib>Behzadi, Mohammad Hassan</creatorcontrib><creatorcontrib>Nazari, Ali</creatorcontrib><title>Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches</title><title>Economic analysis and policy</title><addtitle>ECON ANAL POLICY</addtitle><description>The DEA is a nonparametric method of assessing the efficiency of decision-making units using mathematical programming. The classic DEA model assumes that input and output variables are deterministic. However, there are many applications where the variables are of a stochastic nature. Based on the consideration of input and output levels as random variables, the Stochastic Data Envelopment Analysis (SDEA) was developed. Statistical distributions therefore play a major role in this regard. By considering the dependency between input and output variables, and also their simultaneous dependencies in this study, we have introduced three copula-SCCR models. We used three copulas of Gaussian, Clayton, and Gumbel to estimate the dependence between the random variables with normal distribution. We evaluated the proposed models using real data from 20 bank branches. The results showed that considering stochastic dependency between the inputs or outputs causes different results. A comparison between the Copula-SCCR models and the SCCR models revealed that the efficiency of the DMUs using the Copula-SCCR models differed from the SCCR model by a significant margin of at least 20%.</description><subject>Business & Economics</subject><subject>Copula</subject><subject>Dependency structure</subject><subject>Economics</subject><subject>Normal distribution</subject><subject>Social Sciences</subject><subject>Stochastic Data Envelopment Analysis</subject><issn>0313-5926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><recordid>eNqNkD1v3DAMhj20QNOkP6Cb9sIu5Q_p1E6Hy0cLBMiQdhYkisbp6liGpEuQIf89ul6QMchEEuDzgnyq6iuHhgMX33cNmaVpoeUNqAag_VCdQMe7elCt-FR9TmkHwNXQq5Pq6TYH3JqUPTIMy34y9fnFmt0FRxOzJpFjYWZ5S8zRQrOjGYmlHPeY95FYGMvwGnBvojd2ovSDrWdmlmXyaLI_BASWH2jOjyVz_sdsNDNuKZ1VH0czJfryUk-rv5cXfza_6uubq9-b9XWNXQe5Ngb7fsDeOlSSr6QUYFejFYCtGKSSg1NKohSr3nCBoxq56EQnR9s5a0CZ7rTix1yMIaVIo16ivzPxUXPQB2d6p4szfXCmQenirDDfjswD2TAm9IfXXzkAkG0vFZela_uyvXr_9sbn_1o2YT_ngv48olQM3HuK-gV3PhJm7YJ_48xneUmZWw</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Balak, Sima</creator><creator>Behzadi, Mohammad Hassan</creator><creator>Nazari, Ali</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>17B</scope><scope>BLEPL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1849-5588</orcidid></search><sort><creationdate>202112</creationdate><title>Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches</title><author>Balak, Sima ; Behzadi, Mohammad Hassan ; Nazari, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-aac445c4bdc97187760b8fb60c2657975d997c7684a16cf9f163637fb3dba09a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Business & Economics</topic><topic>Copula</topic><topic>Dependency structure</topic><topic>Economics</topic><topic>Normal distribution</topic><topic>Social Sciences</topic><topic>Stochastic Data Envelopment Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balak, Sima</creatorcontrib><creatorcontrib>Behzadi, Mohammad Hassan</creatorcontrib><creatorcontrib>Nazari, Ali</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>CrossRef</collection><jtitle>Economic analysis and policy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balak, Sima</au><au>Behzadi, Mohammad Hassan</au><au>Nazari, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches</atitle><jtitle>Economic analysis and policy</jtitle><stitle>ECON ANAL POLICY</stitle><date>2021-12</date><risdate>2021</risdate><volume>72</volume><spage>326</spage><epage>341</epage><pages>326-341</pages><issn>0313-5926</issn><abstract>The DEA is a nonparametric method of assessing the efficiency of decision-making units using mathematical programming. The classic DEA model assumes that input and output variables are deterministic. However, there are many applications where the variables are of a stochastic nature. Based on the consideration of input and output levels as random variables, the Stochastic Data Envelopment Analysis (SDEA) was developed. Statistical distributions therefore play a major role in this regard. By considering the dependency between input and output variables, and also their simultaneous dependencies in this study, we have introduced three copula-SCCR models. We used three copulas of Gaussian, Clayton, and Gumbel to estimate the dependence between the random variables with normal distribution. We evaluated the proposed models using real data from 20 bank branches. The results showed that considering stochastic dependency between the inputs or outputs causes different results. A comparison between the Copula-SCCR models and the SCCR models revealed that the efficiency of the DMUs using the Copula-SCCR models differed from the SCCR model by a significant margin of at least 20%.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eap.2021.09.002</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1849-5588</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0313-5926 |
ispartof | Economic analysis and policy, 2021-12, Vol.72, p.326-341 |
issn | 0313-5926 |
language | eng |
recordid | cdi_webofscience_primary_000724791700024 |
source | Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Business & Economics Copula Dependency structure Economics Normal distribution Social Sciences Stochastic Data Envelopment Analysis |
title | Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20copula-DEA%20model%20based%20on%20the%20dependence%20structure%20of%20stochastic%20variables:%20An%20application%20to%20twenty%20bank%20branches&rft.jtitle=Economic%20analysis%20and%20policy&rft.au=Balak,%20Sima&rft.date=2021-12&rft.volume=72&rft.spage=326&rft.epage=341&rft.pages=326-341&rft.issn=0313-5926&rft_id=info:doi/10.1016/j.eap.2021.09.002&rft_dat=%3Celsevier_webof%3ES031359262100120X%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S031359262100120X&rfr_iscdi=true |