Percolation theory based model of conduction mechanism and characteristic contradiction in ZnO RRAM

Resistive random access memory (RRAM) has been intensively investigated for nearly two decades. However, RRAM has not been applied widely in the market because of the poor characteristics, such as reliability and uniformity, which could be improved by the accurate comprehension of the mechanism. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-11, Vol.119 (21), Article 213503
Hauptverfasser: Qi, Haiqing, Hu, Cong, Wang, Yanyong, Ali, Salamat, Hu, Junjie, Bai, Na, Wang, Qi, Qi, Jing, He, Deyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 119
creator Qi, Haiqing
Hu, Cong
Wang, Yanyong
Ali, Salamat
Hu, Junjie
Bai, Na
Wang, Qi
Qi, Jing
He, Deyan
description Resistive random access memory (RRAM) has been intensively investigated for nearly two decades. However, RRAM has not been applied widely in the market because of the poor characteristics, such as reliability and uniformity, which could be improved by the accurate comprehension of the mechanism. In this paper, a model based on percolation theory is proposed to simulate the I-V characteristics of ZnO resistive switching memory. It demonstrates that three different conductions of space charge limited current, Poole–Frenkel effect, and thermionic emission are determined by the relationship between the oxygen vacancy concentration and the bias. Furthermore, this model well explains the effect of conductive filaments' diameter and compliance current on the I-V characteristics of ZnO resistive switching memory, which demonstrates the rationality of the percolation model.
doi_str_mv 10.1063/5.0069763
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000723285900004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601685524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d253cffac35b4a63636340fc27c2213a8502c90eafe01c064bcf2069a8c8c7e43</originalsourceid><addsrcrecordid>eNqN0MtKAzEUBuAgCtbqwjcIuFKZmstkZrosxRtUKkU3bob0TEJT2qQmqdK3N-0UXSmSRU7gOyfJj9A5JT1KCn4jeoQU_bLgB6hDSVlmnNLqEHUIITwr-oIeo5MQ5ukoGOcdBM_Kg1vIaJzFcaac3-CpDKrBS9eoBXYag7PNGnZgqWAmrQlLLG2DU-0lROVNiAa2LnrZmJYai9_sGE8mg6dTdKTlIqiz_d5Fr3e3L8OHbDS-fxwORhlwVsasYYKD1hK4mOay4NuVEw2sBMYol5UgDPpESa0IBVLkU9AsfVZWUEGpct5FF-3clXfvaxViPXdrb9OVNSsILSoh2FZdtgq8C8ErXa-8WUq_qSmptxnWot5nmGzV2k81dTqAURbUt08hloyzSvRTRfKhibsYh25tY2q9_n9r0letTrCd8uerfsUfzv_AetVo_gWb4KC2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601685524</pqid></control><display><type>article</type><title>Percolation theory based model of conduction mechanism and characteristic contradiction in ZnO RRAM</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Qi, Haiqing ; Hu, Cong ; Wang, Yanyong ; Ali, Salamat ; Hu, Junjie ; Bai, Na ; Wang, Qi ; Qi, Jing ; He, Deyan</creator><creatorcontrib>Qi, Haiqing ; Hu, Cong ; Wang, Yanyong ; Ali, Salamat ; Hu, Junjie ; Bai, Na ; Wang, Qi ; Qi, Jing ; He, Deyan</creatorcontrib><description>Resistive random access memory (RRAM) has been intensively investigated for nearly two decades. However, RRAM has not been applied widely in the market because of the poor characteristics, such as reliability and uniformity, which could be improved by the accurate comprehension of the mechanism. In this paper, a model based on percolation theory is proposed to simulate the I-V characteristics of ZnO resistive switching memory. It demonstrates that three different conductions of space charge limited current, Poole–Frenkel effect, and thermionic emission are determined by the relationship between the oxygen vacancy concentration and the bias. Furthermore, this model well explains the effect of conductive filaments' diameter and compliance current on the I-V characteristics of ZnO resistive switching memory, which demonstrates the rationality of the percolation model.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0069763</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Applied physics ; Current voltage characteristics ; Filaments ; Percolation theory ; Physical Sciences ; Physics ; Physics, Applied ; Random access memory ; Science &amp; Technology ; Space charge ; Switching ; Thermionic emission ; Zinc oxide</subject><ispartof>Applied physics letters, 2021-11, Vol.119 (21), Article 213503</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000723285900004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c327t-d253cffac35b4a63636340fc27c2213a8502c90eafe01c064bcf2069a8c8c7e43</citedby><cites>FETCH-LOGICAL-c327t-d253cffac35b4a63636340fc27c2213a8502c90eafe01c064bcf2069a8c8c7e43</cites><orcidid>0000-0003-3260-467X ; 0000-0003-4785-3169 ; 0000-0003-1729-6859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0069763$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,39263,76389</link.rule.ids></links><search><creatorcontrib>Qi, Haiqing</creatorcontrib><creatorcontrib>Hu, Cong</creatorcontrib><creatorcontrib>Wang, Yanyong</creatorcontrib><creatorcontrib>Ali, Salamat</creatorcontrib><creatorcontrib>Hu, Junjie</creatorcontrib><creatorcontrib>Bai, Na</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Qi, Jing</creatorcontrib><creatorcontrib>He, Deyan</creatorcontrib><title>Percolation theory based model of conduction mechanism and characteristic contradiction in ZnO RRAM</title><title>Applied physics letters</title><addtitle>APPL PHYS LETT</addtitle><description>Resistive random access memory (RRAM) has been intensively investigated for nearly two decades. However, RRAM has not been applied widely in the market because of the poor characteristics, such as reliability and uniformity, which could be improved by the accurate comprehension of the mechanism. In this paper, a model based on percolation theory is proposed to simulate the I-V characteristics of ZnO resistive switching memory. It demonstrates that three different conductions of space charge limited current, Poole–Frenkel effect, and thermionic emission are determined by the relationship between the oxygen vacancy concentration and the bias. Furthermore, this model well explains the effect of conductive filaments' diameter and compliance current on the I-V characteristics of ZnO resistive switching memory, which demonstrates the rationality of the percolation model.</description><subject>Applied physics</subject><subject>Current voltage characteristics</subject><subject>Filaments</subject><subject>Percolation theory</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Random access memory</subject><subject>Science &amp; Technology</subject><subject>Space charge</subject><subject>Switching</subject><subject>Thermionic emission</subject><subject>Zinc oxide</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0MtKAzEUBuAgCtbqwjcIuFKZmstkZrosxRtUKkU3bob0TEJT2qQmqdK3N-0UXSmSRU7gOyfJj9A5JT1KCn4jeoQU_bLgB6hDSVlmnNLqEHUIITwr-oIeo5MQ5ukoGOcdBM_Kg1vIaJzFcaac3-CpDKrBS9eoBXYag7PNGnZgqWAmrQlLLG2DU-0lROVNiAa2LnrZmJYai9_sGE8mg6dTdKTlIqiz_d5Fr3e3L8OHbDS-fxwORhlwVsasYYKD1hK4mOay4NuVEw2sBMYol5UgDPpESa0IBVLkU9AsfVZWUEGpct5FF-3clXfvaxViPXdrb9OVNSsILSoh2FZdtgq8C8ErXa-8WUq_qSmptxnWot5nmGzV2k81dTqAURbUt08hloyzSvRTRfKhibsYh25tY2q9_n9r0letTrCd8uerfsUfzv_AetVo_gWb4KC2</recordid><startdate>20211122</startdate><enddate>20211122</enddate><creator>Qi, Haiqing</creator><creator>Hu, Cong</creator><creator>Wang, Yanyong</creator><creator>Ali, Salamat</creator><creator>Hu, Junjie</creator><creator>Bai, Na</creator><creator>Wang, Qi</creator><creator>Qi, Jing</creator><creator>He, Deyan</creator><general>AIP Publishing</general><general>American Institute of Physics</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3260-467X</orcidid><orcidid>https://orcid.org/0000-0003-4785-3169</orcidid><orcidid>https://orcid.org/0000-0003-1729-6859</orcidid></search><sort><creationdate>20211122</creationdate><title>Percolation theory based model of conduction mechanism and characteristic contradiction in ZnO RRAM</title><author>Qi, Haiqing ; Hu, Cong ; Wang, Yanyong ; Ali, Salamat ; Hu, Junjie ; Bai, Na ; Wang, Qi ; Qi, Jing ; He, Deyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d253cffac35b4a63636340fc27c2213a8502c90eafe01c064bcf2069a8c8c7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Current voltage characteristics</topic><topic>Filaments</topic><topic>Percolation theory</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Random access memory</topic><topic>Science &amp; Technology</topic><topic>Space charge</topic><topic>Switching</topic><topic>Thermionic emission</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Haiqing</creatorcontrib><creatorcontrib>Hu, Cong</creatorcontrib><creatorcontrib>Wang, Yanyong</creatorcontrib><creatorcontrib>Ali, Salamat</creatorcontrib><creatorcontrib>Hu, Junjie</creatorcontrib><creatorcontrib>Bai, Na</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Qi, Jing</creatorcontrib><creatorcontrib>He, Deyan</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Haiqing</au><au>Hu, Cong</au><au>Wang, Yanyong</au><au>Ali, Salamat</au><au>Hu, Junjie</au><au>Bai, Na</au><au>Wang, Qi</au><au>Qi, Jing</au><au>He, Deyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Percolation theory based model of conduction mechanism and characteristic contradiction in ZnO RRAM</atitle><jtitle>Applied physics letters</jtitle><stitle>APPL PHYS LETT</stitle><date>2021-11-22</date><risdate>2021</risdate><volume>119</volume><issue>21</issue><artnum>213503</artnum><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Resistive random access memory (RRAM) has been intensively investigated for nearly two decades. However, RRAM has not been applied widely in the market because of the poor characteristics, such as reliability and uniformity, which could be improved by the accurate comprehension of the mechanism. In this paper, a model based on percolation theory is proposed to simulate the I-V characteristics of ZnO resistive switching memory. It demonstrates that three different conductions of space charge limited current, Poole–Frenkel effect, and thermionic emission are determined by the relationship between the oxygen vacancy concentration and the bias. Furthermore, this model well explains the effect of conductive filaments' diameter and compliance current on the I-V characteristics of ZnO resistive switching memory, which demonstrates the rationality of the percolation model.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><doi>10.1063/5.0069763</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3260-467X</orcidid><orcidid>https://orcid.org/0000-0003-4785-3169</orcidid><orcidid>https://orcid.org/0000-0003-1729-6859</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-11, Vol.119 (21), Article 213503
issn 0003-6951
1077-3118
language eng
recordid cdi_webofscience_primary_000723285900004
source AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Applied physics
Current voltage characteristics
Filaments
Percolation theory
Physical Sciences
Physics
Physics, Applied
Random access memory
Science & Technology
Space charge
Switching
Thermionic emission
Zinc oxide
title Percolation theory based model of conduction mechanism and characteristic contradiction in ZnO RRAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Percolation%20theory%20based%20model%20of%20conduction%20mechanism%20and%20characteristic%20contradiction%20in%20ZnO%20RRAM&rft.jtitle=Applied%20physics%20letters&rft.au=Qi,%20Haiqing&rft.date=2021-11-22&rft.volume=119&rft.issue=21&rft.artnum=213503&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0069763&rft_dat=%3Cproquest_webof%3E2601685524%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601685524&rft_id=info:pmid/&rfr_iscdi=true