Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures

The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small- molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2021-11, Vol.7 (48), p.eabl6096, Article 6096
Hauptverfasser: Zafferani, Martina, Haddad, Christina, Luo, Le, Davila-Calderon, Jesse, Chiu, Liang-Yuan, Mugisha, Christian Shema, Monaghan, Adeline G., Kennedy, Andrew A., Yesselman, Joseph D., Gifford, Robert R., Tai, Andrew W., Kutluay, Sebla B., Li, Mei-Ling, Brewer, Gary, Tolbert, Blanton S., Hargrove, Amanda E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 48
container_start_page eabl6096
container_title Science advances
container_volume 7
creator Zafferani, Martina
Haddad, Christina
Luo, Le
Davila-Calderon, Jesse
Chiu, Liang-Yuan
Mugisha, Christian Shema
Monaghan, Adeline G.
Kennedy, Andrew A.
Yesselman, Joseph D.
Gifford, Robert R.
Tai, Andrew W.
Kutluay, Sebla B.
Li, Mei-Ling
Brewer, Gary
Tolbert, Blanton S.
Hargrove, Amanda E.
description The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small- molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5'-end. Nuclear magnetic resonance-based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5' untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals.
doi_str_mv 10.1126/sciadv.abl6096
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000722925100018CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604026172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-7356972c940a25039ef8fb5405a28d1f9bf5c7caf67330b184722f86ec9e04903</originalsourceid><addsrcrecordid>eNqNkctrGzEQxkVpaEKSa49lj4Gyjh4rrXQJmCV9QEggj16FVh45KuuVK2kd8t9XiV2T3nIawfy-b0bzIfSZ4BkhVJwn681iMzP9ILASH9ARZS2vKW_kxzfvQ3Sa0m-MMWmE4ER9QoeskVRQJo7Q9XzlhxD9AlLlx0ff-1zdzW_v6i78qmkVYT14a7IPY2lXG59jqPrnKpu4hOzHZXV7Pa9SjpPNU4R0gg6cGRKc7uoxevh2ed_9qK9uvv_s5le1ZQrnumVcqJZa1WBDOWYKnHQ9bzA3VC6IU73jtrXGiZYx3BPZtJQ6KcAqwI3C7BhdbH3XU7-ChYUxRzPodfQrE591MF7_3xn9o16GjZaCCtyKYnC2M4jhzwQp65VPFobBjBCmpAvVYCpISws626I2hpQiuP0YgvVLDnqbg97lUARf3i63x_9dvQByCzxBH1xRw2hhj5Wkym8V5eQlM9n5_Hr_LkxjLtKv75eyv1pupj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604026172</pqid></control><display><type>article</type><title>Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zafferani, Martina ; Haddad, Christina ; Luo, Le ; Davila-Calderon, Jesse ; Chiu, Liang-Yuan ; Mugisha, Christian Shema ; Monaghan, Adeline G. ; Kennedy, Andrew A. ; Yesselman, Joseph D. ; Gifford, Robert R. ; Tai, Andrew W. ; Kutluay, Sebla B. ; Li, Mei-Ling ; Brewer, Gary ; Tolbert, Blanton S. ; Hargrove, Amanda E.</creator><creatorcontrib>Zafferani, Martina ; Haddad, Christina ; Luo, Le ; Davila-Calderon, Jesse ; Chiu, Liang-Yuan ; Mugisha, Christian Shema ; Monaghan, Adeline G. ; Kennedy, Andrew A. ; Yesselman, Joseph D. ; Gifford, Robert R. ; Tai, Andrew W. ; Kutluay, Sebla B. ; Li, Mei-Ling ; Brewer, Gary ; Tolbert, Blanton S. ; Hargrove, Amanda E.</creatorcontrib><description>The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small- molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5'-end. Nuclear magnetic resonance-based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5' untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abl6096</identifier><identifier>PMID: 34826236</identifier><language>eng</language><publisher>WASHINGTON: Amer Assoc Advancement Science</publisher><subject>Biomedicine and Life Sciences ; Biophysics ; Coronavirus ; Multidisciplinary Sciences ; SciAdv r-articles ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Virology</subject><ispartof>Science advances, 2021-11, Vol.7 (48), p.eabl6096, Article 6096</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000722925100018</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c390t-7356972c940a25039ef8fb5405a28d1f9bf5c7caf67330b184722f86ec9e04903</citedby><cites>FETCH-LOGICAL-c390t-7356972c940a25039ef8fb5405a28d1f9bf5c7caf67330b184722f86ec9e04903</cites><orcidid>0000-0002-9991-4536 ; 0000-0002-3747-0597 ; 0000-0002-0584-1023 ; 0000-0003-4586-1843 ; 0000-0003-4028-9884 ; 0000-0001-5549-7032 ; 0000-0003-4082-2941 ; 0000-0002-6877-450X ; 0000-0002-2643-1904 ; 0000-0002-4180-3964 ; 0000-0001-6172-5521 ; 0000-0003-2456-0443 ; 0000-0003-1536-6753 ; 0000-0002-0517-7986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626076/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626076/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2118,27933,27934,39267,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34826236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zafferani, Martina</creatorcontrib><creatorcontrib>Haddad, Christina</creatorcontrib><creatorcontrib>Luo, Le</creatorcontrib><creatorcontrib>Davila-Calderon, Jesse</creatorcontrib><creatorcontrib>Chiu, Liang-Yuan</creatorcontrib><creatorcontrib>Mugisha, Christian Shema</creatorcontrib><creatorcontrib>Monaghan, Adeline G.</creatorcontrib><creatorcontrib>Kennedy, Andrew A.</creatorcontrib><creatorcontrib>Yesselman, Joseph D.</creatorcontrib><creatorcontrib>Gifford, Robert R.</creatorcontrib><creatorcontrib>Tai, Andrew W.</creatorcontrib><creatorcontrib>Kutluay, Sebla B.</creatorcontrib><creatorcontrib>Li, Mei-Ling</creatorcontrib><creatorcontrib>Brewer, Gary</creatorcontrib><creatorcontrib>Tolbert, Blanton S.</creatorcontrib><creatorcontrib>Hargrove, Amanda E.</creatorcontrib><title>Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures</title><title>Science advances</title><addtitle>SCI ADV</addtitle><addtitle>Sci Adv</addtitle><description>The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small- molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5'-end. Nuclear magnetic resonance-based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5' untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals.</description><subject>Biomedicine and Life Sciences</subject><subject>Biophysics</subject><subject>Coronavirus</subject><subject>Multidisciplinary Sciences</subject><subject>SciAdv r-articles</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Virology</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkctrGzEQxkVpaEKSa49lj4Gyjh4rrXQJmCV9QEggj16FVh45KuuVK2kd8t9XiV2T3nIawfy-b0bzIfSZ4BkhVJwn681iMzP9ILASH9ARZS2vKW_kxzfvQ3Sa0m-MMWmE4ER9QoeskVRQJo7Q9XzlhxD9AlLlx0ff-1zdzW_v6i78qmkVYT14a7IPY2lXG59jqPrnKpu4hOzHZXV7Pa9SjpPNU4R0gg6cGRKc7uoxevh2ed_9qK9uvv_s5le1ZQrnumVcqJZa1WBDOWYKnHQ9bzA3VC6IU73jtrXGiZYx3BPZtJQ6KcAqwI3C7BhdbH3XU7-ChYUxRzPodfQrE591MF7_3xn9o16GjZaCCtyKYnC2M4jhzwQp65VPFobBjBCmpAvVYCpISws626I2hpQiuP0YgvVLDnqbg97lUARf3i63x_9dvQByCzxBH1xRw2hhj5Wkym8V5eQlM9n5_Hr_LkxjLtKv75eyv1pupj8</recordid><startdate>20211126</startdate><enddate>20211126</enddate><creator>Zafferani, Martina</creator><creator>Haddad, Christina</creator><creator>Luo, Le</creator><creator>Davila-Calderon, Jesse</creator><creator>Chiu, Liang-Yuan</creator><creator>Mugisha, Christian Shema</creator><creator>Monaghan, Adeline G.</creator><creator>Kennedy, Andrew A.</creator><creator>Yesselman, Joseph D.</creator><creator>Gifford, Robert R.</creator><creator>Tai, Andrew W.</creator><creator>Kutluay, Sebla B.</creator><creator>Li, Mei-Ling</creator><creator>Brewer, Gary</creator><creator>Tolbert, Blanton S.</creator><creator>Hargrove, Amanda E.</creator><general>Amer Assoc Advancement Science</general><general>American Association for the Advancement of Science</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9991-4536</orcidid><orcidid>https://orcid.org/0000-0002-3747-0597</orcidid><orcidid>https://orcid.org/0000-0002-0584-1023</orcidid><orcidid>https://orcid.org/0000-0003-4586-1843</orcidid><orcidid>https://orcid.org/0000-0003-4028-9884</orcidid><orcidid>https://orcid.org/0000-0001-5549-7032</orcidid><orcidid>https://orcid.org/0000-0003-4082-2941</orcidid><orcidid>https://orcid.org/0000-0002-6877-450X</orcidid><orcidid>https://orcid.org/0000-0002-2643-1904</orcidid><orcidid>https://orcid.org/0000-0002-4180-3964</orcidid><orcidid>https://orcid.org/0000-0001-6172-5521</orcidid><orcidid>https://orcid.org/0000-0003-2456-0443</orcidid><orcidid>https://orcid.org/0000-0003-1536-6753</orcidid><orcidid>https://orcid.org/0000-0002-0517-7986</orcidid></search><sort><creationdate>20211126</creationdate><title>Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures</title><author>Zafferani, Martina ; Haddad, Christina ; Luo, Le ; Davila-Calderon, Jesse ; Chiu, Liang-Yuan ; Mugisha, Christian Shema ; Monaghan, Adeline G. ; Kennedy, Andrew A. ; Yesselman, Joseph D. ; Gifford, Robert R. ; Tai, Andrew W. ; Kutluay, Sebla B. ; Li, Mei-Ling ; Brewer, Gary ; Tolbert, Blanton S. ; Hargrove, Amanda E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-7356972c940a25039ef8fb5405a28d1f9bf5c7caf67330b184722f86ec9e04903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Biophysics</topic><topic>Coronavirus</topic><topic>Multidisciplinary Sciences</topic><topic>SciAdv r-articles</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafferani, Martina</creatorcontrib><creatorcontrib>Haddad, Christina</creatorcontrib><creatorcontrib>Luo, Le</creatorcontrib><creatorcontrib>Davila-Calderon, Jesse</creatorcontrib><creatorcontrib>Chiu, Liang-Yuan</creatorcontrib><creatorcontrib>Mugisha, Christian Shema</creatorcontrib><creatorcontrib>Monaghan, Adeline G.</creatorcontrib><creatorcontrib>Kennedy, Andrew A.</creatorcontrib><creatorcontrib>Yesselman, Joseph D.</creatorcontrib><creatorcontrib>Gifford, Robert R.</creatorcontrib><creatorcontrib>Tai, Andrew W.</creatorcontrib><creatorcontrib>Kutluay, Sebla B.</creatorcontrib><creatorcontrib>Li, Mei-Ling</creatorcontrib><creatorcontrib>Brewer, Gary</creatorcontrib><creatorcontrib>Tolbert, Blanton S.</creatorcontrib><creatorcontrib>Hargrove, Amanda E.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafferani, Martina</au><au>Haddad, Christina</au><au>Luo, Le</au><au>Davila-Calderon, Jesse</au><au>Chiu, Liang-Yuan</au><au>Mugisha, Christian Shema</au><au>Monaghan, Adeline G.</au><au>Kennedy, Andrew A.</au><au>Yesselman, Joseph D.</au><au>Gifford, Robert R.</au><au>Tai, Andrew W.</au><au>Kutluay, Sebla B.</au><au>Li, Mei-Ling</au><au>Brewer, Gary</au><au>Tolbert, Blanton S.</au><au>Hargrove, Amanda E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures</atitle><jtitle>Science advances</jtitle><stitle>SCI ADV</stitle><addtitle>Sci Adv</addtitle><date>2021-11-26</date><risdate>2021</risdate><volume>7</volume><issue>48</issue><spage>eabl6096</spage><pages>eabl6096-</pages><artnum>6096</artnum><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small- molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5'-end. Nuclear magnetic resonance-based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5' untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals.</abstract><cop>WASHINGTON</cop><pub>Amer Assoc Advancement Science</pub><pmid>34826236</pmid><doi>10.1126/sciadv.abl6096</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9991-4536</orcidid><orcidid>https://orcid.org/0000-0002-3747-0597</orcidid><orcidid>https://orcid.org/0000-0002-0584-1023</orcidid><orcidid>https://orcid.org/0000-0003-4586-1843</orcidid><orcidid>https://orcid.org/0000-0003-4028-9884</orcidid><orcidid>https://orcid.org/0000-0001-5549-7032</orcidid><orcidid>https://orcid.org/0000-0003-4082-2941</orcidid><orcidid>https://orcid.org/0000-0002-6877-450X</orcidid><orcidid>https://orcid.org/0000-0002-2643-1904</orcidid><orcidid>https://orcid.org/0000-0002-4180-3964</orcidid><orcidid>https://orcid.org/0000-0001-6172-5521</orcidid><orcidid>https://orcid.org/0000-0003-2456-0443</orcidid><orcidid>https://orcid.org/0000-0003-1536-6753</orcidid><orcidid>https://orcid.org/0000-0002-0517-7986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2021-11, Vol.7 (48), p.eabl6096, Article 6096
issn 2375-2548
2375-2548
language eng
recordid cdi_webofscience_primary_000722925100018CitationCount
source DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biomedicine and Life Sciences
Biophysics
Coronavirus
Multidisciplinary Sciences
SciAdv r-articles
Science & Technology
Science & Technology - Other Topics
Virology
title Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T05%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amilorides%20inhibit%20SARS-CoV-2%20replication%20in%20vitro%20by%20targeting%20RNA%20structures&rft.jtitle=Science%20advances&rft.au=Zafferani,%20Martina&rft.date=2021-11-26&rft.volume=7&rft.issue=48&rft.spage=eabl6096&rft.pages=eabl6096-&rft.artnum=6096&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abl6096&rft_dat=%3Cproquest_webof%3E2604026172%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604026172&rft_id=info:pmid/34826236&rfr_iscdi=true