Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures
The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small- molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report...
Gespeichert in:
Veröffentlicht in: | Science advances 2021-11, Vol.7 (48), p.eabl6096, Article 6096 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 48 |
container_start_page | eabl6096 |
container_title | Science advances |
container_volume | 7 |
creator | Zafferani, Martina Haddad, Christina Luo, Le Davila-Calderon, Jesse Chiu, Liang-Yuan Mugisha, Christian Shema Monaghan, Adeline G. Kennedy, Andrew A. Yesselman, Joseph D. Gifford, Robert R. Tai, Andrew W. Kutluay, Sebla B. Li, Mei-Ling Brewer, Gary Tolbert, Blanton S. Hargrove, Amanda E. |
description | The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small- molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5'-end. Nuclear magnetic resonance-based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5' untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals. |
doi_str_mv | 10.1126/sciadv.abl6096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000722925100018CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604026172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-7356972c940a25039ef8fb5405a28d1f9bf5c7caf67330b184722f86ec9e04903</originalsourceid><addsrcrecordid>eNqNkctrGzEQxkVpaEKSa49lj4Gyjh4rrXQJmCV9QEggj16FVh45KuuVK2kd8t9XiV2T3nIawfy-b0bzIfSZ4BkhVJwn681iMzP9ILASH9ARZS2vKW_kxzfvQ3Sa0m-MMWmE4ER9QoeskVRQJo7Q9XzlhxD9AlLlx0ff-1zdzW_v6i78qmkVYT14a7IPY2lXG59jqPrnKpu4hOzHZXV7Pa9SjpPNU4R0gg6cGRKc7uoxevh2ed_9qK9uvv_s5le1ZQrnumVcqJZa1WBDOWYKnHQ9bzA3VC6IU73jtrXGiZYx3BPZtJQ6KcAqwI3C7BhdbH3XU7-ChYUxRzPodfQrE591MF7_3xn9o16GjZaCCtyKYnC2M4jhzwQp65VPFobBjBCmpAvVYCpISws626I2hpQiuP0YgvVLDnqbg97lUARf3i63x_9dvQByCzxBH1xRw2hhj5Wkym8V5eQlM9n5_Hr_LkxjLtKv75eyv1pupj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604026172</pqid></control><display><type>article</type><title>Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zafferani, Martina ; Haddad, Christina ; Luo, Le ; Davila-Calderon, Jesse ; Chiu, Liang-Yuan ; Mugisha, Christian Shema ; Monaghan, Adeline G. ; Kennedy, Andrew A. ; Yesselman, Joseph D. ; Gifford, Robert R. ; Tai, Andrew W. ; Kutluay, Sebla B. ; Li, Mei-Ling ; Brewer, Gary ; Tolbert, Blanton S. ; Hargrove, Amanda E.</creator><creatorcontrib>Zafferani, Martina ; Haddad, Christina ; Luo, Le ; Davila-Calderon, Jesse ; Chiu, Liang-Yuan ; Mugisha, Christian Shema ; Monaghan, Adeline G. ; Kennedy, Andrew A. ; Yesselman, Joseph D. ; Gifford, Robert R. ; Tai, Andrew W. ; Kutluay, Sebla B. ; Li, Mei-Ling ; Brewer, Gary ; Tolbert, Blanton S. ; Hargrove, Amanda E.</creatorcontrib><description>The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small- molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5'-end. Nuclear magnetic resonance-based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5' untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abl6096</identifier><identifier>PMID: 34826236</identifier><language>eng</language><publisher>WASHINGTON: Amer Assoc Advancement Science</publisher><subject>Biomedicine and Life Sciences ; Biophysics ; Coronavirus ; Multidisciplinary Sciences ; SciAdv r-articles ; Science & Technology ; Science & Technology - Other Topics ; Virology</subject><ispartof>Science advances, 2021-11, Vol.7 (48), p.eabl6096, Article 6096</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000722925100018</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c390t-7356972c940a25039ef8fb5405a28d1f9bf5c7caf67330b184722f86ec9e04903</citedby><cites>FETCH-LOGICAL-c390t-7356972c940a25039ef8fb5405a28d1f9bf5c7caf67330b184722f86ec9e04903</cites><orcidid>0000-0002-9991-4536 ; 0000-0002-3747-0597 ; 0000-0002-0584-1023 ; 0000-0003-4586-1843 ; 0000-0003-4028-9884 ; 0000-0001-5549-7032 ; 0000-0003-4082-2941 ; 0000-0002-6877-450X ; 0000-0002-2643-1904 ; 0000-0002-4180-3964 ; 0000-0001-6172-5521 ; 0000-0003-2456-0443 ; 0000-0003-1536-6753 ; 0000-0002-0517-7986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626076/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626076/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2118,27933,27934,39267,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34826236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zafferani, Martina</creatorcontrib><creatorcontrib>Haddad, Christina</creatorcontrib><creatorcontrib>Luo, Le</creatorcontrib><creatorcontrib>Davila-Calderon, Jesse</creatorcontrib><creatorcontrib>Chiu, Liang-Yuan</creatorcontrib><creatorcontrib>Mugisha, Christian Shema</creatorcontrib><creatorcontrib>Monaghan, Adeline G.</creatorcontrib><creatorcontrib>Kennedy, Andrew A.</creatorcontrib><creatorcontrib>Yesselman, Joseph D.</creatorcontrib><creatorcontrib>Gifford, Robert R.</creatorcontrib><creatorcontrib>Tai, Andrew W.</creatorcontrib><creatorcontrib>Kutluay, Sebla B.</creatorcontrib><creatorcontrib>Li, Mei-Ling</creatorcontrib><creatorcontrib>Brewer, Gary</creatorcontrib><creatorcontrib>Tolbert, Blanton S.</creatorcontrib><creatorcontrib>Hargrove, Amanda E.</creatorcontrib><title>Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures</title><title>Science advances</title><addtitle>SCI ADV</addtitle><addtitle>Sci Adv</addtitle><description>The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small- molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5'-end. Nuclear magnetic resonance-based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5' untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals.</description><subject>Biomedicine and Life Sciences</subject><subject>Biophysics</subject><subject>Coronavirus</subject><subject>Multidisciplinary Sciences</subject><subject>SciAdv r-articles</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Virology</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkctrGzEQxkVpaEKSa49lj4Gyjh4rrXQJmCV9QEggj16FVh45KuuVK2kd8t9XiV2T3nIawfy-b0bzIfSZ4BkhVJwn681iMzP9ILASH9ARZS2vKW_kxzfvQ3Sa0m-MMWmE4ER9QoeskVRQJo7Q9XzlhxD9AlLlx0ff-1zdzW_v6i78qmkVYT14a7IPY2lXG59jqPrnKpu4hOzHZXV7Pa9SjpPNU4R0gg6cGRKc7uoxevh2ed_9qK9uvv_s5le1ZQrnumVcqJZa1WBDOWYKnHQ9bzA3VC6IU73jtrXGiZYx3BPZtJQ6KcAqwI3C7BhdbH3XU7-ChYUxRzPodfQrE591MF7_3xn9o16GjZaCCtyKYnC2M4jhzwQp65VPFobBjBCmpAvVYCpISws626I2hpQiuP0YgvVLDnqbg97lUARf3i63x_9dvQByCzxBH1xRw2hhj5Wkym8V5eQlM9n5_Hr_LkxjLtKv75eyv1pupj8</recordid><startdate>20211126</startdate><enddate>20211126</enddate><creator>Zafferani, Martina</creator><creator>Haddad, Christina</creator><creator>Luo, Le</creator><creator>Davila-Calderon, Jesse</creator><creator>Chiu, Liang-Yuan</creator><creator>Mugisha, Christian Shema</creator><creator>Monaghan, Adeline G.</creator><creator>Kennedy, Andrew A.</creator><creator>Yesselman, Joseph D.</creator><creator>Gifford, Robert R.</creator><creator>Tai, Andrew W.</creator><creator>Kutluay, Sebla B.</creator><creator>Li, Mei-Ling</creator><creator>Brewer, Gary</creator><creator>Tolbert, Blanton S.</creator><creator>Hargrove, Amanda E.</creator><general>Amer Assoc Advancement Science</general><general>American Association for the Advancement of Science</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9991-4536</orcidid><orcidid>https://orcid.org/0000-0002-3747-0597</orcidid><orcidid>https://orcid.org/0000-0002-0584-1023</orcidid><orcidid>https://orcid.org/0000-0003-4586-1843</orcidid><orcidid>https://orcid.org/0000-0003-4028-9884</orcidid><orcidid>https://orcid.org/0000-0001-5549-7032</orcidid><orcidid>https://orcid.org/0000-0003-4082-2941</orcidid><orcidid>https://orcid.org/0000-0002-6877-450X</orcidid><orcidid>https://orcid.org/0000-0002-2643-1904</orcidid><orcidid>https://orcid.org/0000-0002-4180-3964</orcidid><orcidid>https://orcid.org/0000-0001-6172-5521</orcidid><orcidid>https://orcid.org/0000-0003-2456-0443</orcidid><orcidid>https://orcid.org/0000-0003-1536-6753</orcidid><orcidid>https://orcid.org/0000-0002-0517-7986</orcidid></search><sort><creationdate>20211126</creationdate><title>Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures</title><author>Zafferani, Martina ; Haddad, Christina ; Luo, Le ; Davila-Calderon, Jesse ; Chiu, Liang-Yuan ; Mugisha, Christian Shema ; Monaghan, Adeline G. ; Kennedy, Andrew A. ; Yesselman, Joseph D. ; Gifford, Robert R. ; Tai, Andrew W. ; Kutluay, Sebla B. ; Li, Mei-Ling ; Brewer, Gary ; Tolbert, Blanton S. ; Hargrove, Amanda E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-7356972c940a25039ef8fb5405a28d1f9bf5c7caf67330b184722f86ec9e04903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Biophysics</topic><topic>Coronavirus</topic><topic>Multidisciplinary Sciences</topic><topic>SciAdv r-articles</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafferani, Martina</creatorcontrib><creatorcontrib>Haddad, Christina</creatorcontrib><creatorcontrib>Luo, Le</creatorcontrib><creatorcontrib>Davila-Calderon, Jesse</creatorcontrib><creatorcontrib>Chiu, Liang-Yuan</creatorcontrib><creatorcontrib>Mugisha, Christian Shema</creatorcontrib><creatorcontrib>Monaghan, Adeline G.</creatorcontrib><creatorcontrib>Kennedy, Andrew A.</creatorcontrib><creatorcontrib>Yesselman, Joseph D.</creatorcontrib><creatorcontrib>Gifford, Robert R.</creatorcontrib><creatorcontrib>Tai, Andrew W.</creatorcontrib><creatorcontrib>Kutluay, Sebla B.</creatorcontrib><creatorcontrib>Li, Mei-Ling</creatorcontrib><creatorcontrib>Brewer, Gary</creatorcontrib><creatorcontrib>Tolbert, Blanton S.</creatorcontrib><creatorcontrib>Hargrove, Amanda E.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafferani, Martina</au><au>Haddad, Christina</au><au>Luo, Le</au><au>Davila-Calderon, Jesse</au><au>Chiu, Liang-Yuan</au><au>Mugisha, Christian Shema</au><au>Monaghan, Adeline G.</au><au>Kennedy, Andrew A.</au><au>Yesselman, Joseph D.</au><au>Gifford, Robert R.</au><au>Tai, Andrew W.</au><au>Kutluay, Sebla B.</au><au>Li, Mei-Ling</au><au>Brewer, Gary</au><au>Tolbert, Blanton S.</au><au>Hargrove, Amanda E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures</atitle><jtitle>Science advances</jtitle><stitle>SCI ADV</stitle><addtitle>Sci Adv</addtitle><date>2021-11-26</date><risdate>2021</risdate><volume>7</volume><issue>48</issue><spage>eabl6096</spage><pages>eabl6096-</pages><artnum>6096</artnum><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small- molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5'-end. Nuclear magnetic resonance-based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5' untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals.</abstract><cop>WASHINGTON</cop><pub>Amer Assoc Advancement Science</pub><pmid>34826236</pmid><doi>10.1126/sciadv.abl6096</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9991-4536</orcidid><orcidid>https://orcid.org/0000-0002-3747-0597</orcidid><orcidid>https://orcid.org/0000-0002-0584-1023</orcidid><orcidid>https://orcid.org/0000-0003-4586-1843</orcidid><orcidid>https://orcid.org/0000-0003-4028-9884</orcidid><orcidid>https://orcid.org/0000-0001-5549-7032</orcidid><orcidid>https://orcid.org/0000-0003-4082-2941</orcidid><orcidid>https://orcid.org/0000-0002-6877-450X</orcidid><orcidid>https://orcid.org/0000-0002-2643-1904</orcidid><orcidid>https://orcid.org/0000-0002-4180-3964</orcidid><orcidid>https://orcid.org/0000-0001-6172-5521</orcidid><orcidid>https://orcid.org/0000-0003-2456-0443</orcidid><orcidid>https://orcid.org/0000-0003-1536-6753</orcidid><orcidid>https://orcid.org/0000-0002-0517-7986</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2021-11, Vol.7 (48), p.eabl6096, Article 6096 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_webofscience_primary_000722925100018CitationCount |
source | DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biomedicine and Life Sciences Biophysics Coronavirus Multidisciplinary Sciences SciAdv r-articles Science & Technology Science & Technology - Other Topics Virology |
title | Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T05%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amilorides%20inhibit%20SARS-CoV-2%20replication%20in%20vitro%20by%20targeting%20RNA%20structures&rft.jtitle=Science%20advances&rft.au=Zafferani,%20Martina&rft.date=2021-11-26&rft.volume=7&rft.issue=48&rft.spage=eabl6096&rft.pages=eabl6096-&rft.artnum=6096&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abl6096&rft_dat=%3Cproquest_webof%3E2604026172%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604026172&rft_id=info:pmid/34826236&rfr_iscdi=true |