Dynamics in natural and designed elastins and their relation to elastic fiber structure and recoil
Elastin fibers assemble in the extracellular matrix from the precursor protein tropoelastin and provide the flexibility and spontaneous recoil required for arterial function. Unlike many proteins, a structure-function mechanism for elastin has been elusive. We have performed detailed NMR relaxation...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2021-10, Vol.120 (20), p.4623-4634 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4634 |
---|---|
container_issue | 20 |
container_start_page | 4623 |
container_title | Biophysical journal |
container_volume | 120 |
creator | Carvajal, Ma. Faye Charmagne A. Preston, Jonathan M. Jamhawi, Nour M. Sabo, T. Michael Bhattacharya, Shibani Aramini, James M. Wittebort, Richard J. Koder, Ronald L. |
description | Elastin fibers assemble in the extracellular matrix from the precursor protein tropoelastin and provide the flexibility and spontaneous recoil required for arterial function. Unlike many proteins, a structure-function mechanism for elastin has been elusive. We have performed detailed NMR relaxation studies of the dynamics of the minielastins 24x′ and 20x′ using solution NMR, and of purified bovine elastin fibers in the presence and absence of mechanical stress using solid state NMR. The low sequence complexity of the minielastins enables us to determine average dynamical timescales and degrees of local ordering in the cross-link and hydrophobic modules separately using NMR relaxation by taking advantage of their residue-specific resolution. We find an extremely high degree of disorder, with order parameters for the entirety of the hydrophobic domains near zero, resembling that of simple chemical polymers and less than the order parameters that have been observed in other intrinsically disordered proteins. We find that average backbone order parameters in natural, purified elastin fibers are comparable to those found in 24x′ and 20x′ in solution. The difference in dynamics, compared with the minielastins, is that backbone correlation times are significantly slowed in purified elastin. Moreover, when elastin is mechanically stretched, the high chain disorder in purified elastin is retained, showing that any change in local ordering is below that detectable in our experiment. Combined with our previous finding of a 10-fold increase in the ordering of water when fully hydrated elastin fibers are stretched by 50%, these results support the hypothesis that stretch induced solvent ordering, i.e., the hydrophobic effect, is a key player in the elastic recoil of elastin as opposed to configurational entropy loss. |
doi_str_mv | 10.1016/j.bpj.2021.06.043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000722268000009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349521006366</els_id><sourcerecordid>2557544403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-18a62b7bd2100d03a16a3c3ea364286e5652f3f2a49c366bd2d3bdadf9fdb66f3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7uzqD_AifRSk28rn9CAIMq4fsOBFzyGdVO9m6EnGJL2y_97Mh4NexFwCVc9bSfEQ8oJCR4GqN5tu2G06Box2oDoQ_BFZUClYC9Crx2QBAKrlYiUvyGXOGwDKJNCn5IILzleKywUZPjwEs_U2Nz40wZQ5makxwTUOs78N6BqcTC4-5EO13KFPTaq14mNoSjy1bTP6AVOTS5ptHYIHOqGNfnpGnoxmyvj8dF-R7x-vv60_tzdfP31Zv79prZC0tLQ3ig3LwTEK4IAbqgy3HA1XgvUKpZJs5CMzYmW5UpVzfHDGjavRDUqN_Iq8O87dzcMWncVQ6jJ6l_zWpAcdjdd_d4K_07fxXvdScgW0Dnh1GpDijxlz0VufLU6TCRjnrJmUSymEAF5RekRtijknHM_PUNB7N3qjqxu9d6NB6eqmZl7--b9z4reMCrw-Aj9xiGO2HoPFM1ZlLhljqof9WVW6_3967cvB2DrOodTo22MUq457j0mf4s5XZUW76P-xxy8y08J7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557544403</pqid></control><display><type>article</type><title>Dynamics in natural and designed elastins and their relation to elastic fiber structure and recoil</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Carvajal, Ma. Faye Charmagne A. ; Preston, Jonathan M. ; Jamhawi, Nour M. ; Sabo, T. Michael ; Bhattacharya, Shibani ; Aramini, James M. ; Wittebort, Richard J. ; Koder, Ronald L.</creator><creatorcontrib>Carvajal, Ma. Faye Charmagne A. ; Preston, Jonathan M. ; Jamhawi, Nour M. ; Sabo, T. Michael ; Bhattacharya, Shibani ; Aramini, James M. ; Wittebort, Richard J. ; Koder, Ronald L.</creatorcontrib><description>Elastin fibers assemble in the extracellular matrix from the precursor protein tropoelastin and provide the flexibility and spontaneous recoil required for arterial function. Unlike many proteins, a structure-function mechanism for elastin has been elusive. We have performed detailed NMR relaxation studies of the dynamics of the minielastins 24x′ and 20x′ using solution NMR, and of purified bovine elastin fibers in the presence and absence of mechanical stress using solid state NMR. The low sequence complexity of the minielastins enables us to determine average dynamical timescales and degrees of local ordering in the cross-link and hydrophobic modules separately using NMR relaxation by taking advantage of their residue-specific resolution. We find an extremely high degree of disorder, with order parameters for the entirety of the hydrophobic domains near zero, resembling that of simple chemical polymers and less than the order parameters that have been observed in other intrinsically disordered proteins. We find that average backbone order parameters in natural, purified elastin fibers are comparable to those found in 24x′ and 20x′ in solution. The difference in dynamics, compared with the minielastins, is that backbone correlation times are significantly slowed in purified elastin. Moreover, when elastin is mechanically stretched, the high chain disorder in purified elastin is retained, showing that any change in local ordering is below that detectable in our experiment. Combined with our previous finding of a 10-fold increase in the ordering of water when fully hydrated elastin fibers are stretched by 50%, these results support the hypothesis that stretch induced solvent ordering, i.e., the hydrophobic effect, is a key player in the elastic recoil of elastin as opposed to configurational entropy loss.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2021.06.043</identifier><identifier>PMID: 34339635</identifier><language>eng</language><publisher>CAMBRIDGE: Elsevier Inc</publisher><subject>Animals ; Biophysics ; Cattle ; Elastic Tissue ; Elastin ; Extracellular Matrix ; Hydrophobic and Hydrophilic Interactions ; Life Sciences & Biomedicine ; Science & Technology ; Tropoelastin</subject><ispartof>Biophysical journal, 2021-10, Vol.120 (20), p.4623-4634</ispartof><rights>2021 Biophysical Society</rights><rights>Copyright © 2021 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 Biophysical Society. 2021 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000722268000009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c451t-18a62b7bd2100d03a16a3c3ea364286e5652f3f2a49c366bd2d3bdadf9fdb66f3</citedby><cites>FETCH-LOGICAL-c451t-18a62b7bd2100d03a16a3c3ea364286e5652f3f2a49c366bd2d3bdadf9fdb66f3</cites><orcidid>0000-0003-0868-4972 ; 0000-0002-9573-145X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553601/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2021.06.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,3551,27929,27930,39263,46000,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34339635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvajal, Ma. Faye Charmagne A.</creatorcontrib><creatorcontrib>Preston, Jonathan M.</creatorcontrib><creatorcontrib>Jamhawi, Nour M.</creatorcontrib><creatorcontrib>Sabo, T. Michael</creatorcontrib><creatorcontrib>Bhattacharya, Shibani</creatorcontrib><creatorcontrib>Aramini, James M.</creatorcontrib><creatorcontrib>Wittebort, Richard J.</creatorcontrib><creatorcontrib>Koder, Ronald L.</creatorcontrib><title>Dynamics in natural and designed elastins and their relation to elastic fiber structure and recoil</title><title>Biophysical journal</title><addtitle>BIOPHYS J</addtitle><addtitle>Biophys J</addtitle><description>Elastin fibers assemble in the extracellular matrix from the precursor protein tropoelastin and provide the flexibility and spontaneous recoil required for arterial function. Unlike many proteins, a structure-function mechanism for elastin has been elusive. We have performed detailed NMR relaxation studies of the dynamics of the minielastins 24x′ and 20x′ using solution NMR, and of purified bovine elastin fibers in the presence and absence of mechanical stress using solid state NMR. The low sequence complexity of the minielastins enables us to determine average dynamical timescales and degrees of local ordering in the cross-link and hydrophobic modules separately using NMR relaxation by taking advantage of their residue-specific resolution. We find an extremely high degree of disorder, with order parameters for the entirety of the hydrophobic domains near zero, resembling that of simple chemical polymers and less than the order parameters that have been observed in other intrinsically disordered proteins. We find that average backbone order parameters in natural, purified elastin fibers are comparable to those found in 24x′ and 20x′ in solution. The difference in dynamics, compared with the minielastins, is that backbone correlation times are significantly slowed in purified elastin. Moreover, when elastin is mechanically stretched, the high chain disorder in purified elastin is retained, showing that any change in local ordering is below that detectable in our experiment. Combined with our previous finding of a 10-fold increase in the ordering of water when fully hydrated elastin fibers are stretched by 50%, these results support the hypothesis that stretch induced solvent ordering, i.e., the hydrophobic effect, is a key player in the elastic recoil of elastin as opposed to configurational entropy loss.</description><subject>Animals</subject><subject>Biophysics</subject><subject>Cattle</subject><subject>Elastic Tissue</subject><subject>Elastin</subject><subject>Extracellular Matrix</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Life Sciences & Biomedicine</subject><subject>Science & Technology</subject><subject>Tropoelastin</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7uzqD_AifRSk28rn9CAIMq4fsOBFzyGdVO9m6EnGJL2y_97Mh4NexFwCVc9bSfEQ8oJCR4GqN5tu2G06Box2oDoQ_BFZUClYC9Crx2QBAKrlYiUvyGXOGwDKJNCn5IILzleKywUZPjwEs_U2Nz40wZQ5makxwTUOs78N6BqcTC4-5EO13KFPTaq14mNoSjy1bTP6AVOTS5ptHYIHOqGNfnpGnoxmyvj8dF-R7x-vv60_tzdfP31Zv79prZC0tLQ3ig3LwTEK4IAbqgy3HA1XgvUKpZJs5CMzYmW5UpVzfHDGjavRDUqN_Iq8O87dzcMWncVQ6jJ6l_zWpAcdjdd_d4K_07fxXvdScgW0Dnh1GpDijxlz0VufLU6TCRjnrJmUSymEAF5RekRtijknHM_PUNB7N3qjqxu9d6NB6eqmZl7--b9z4reMCrw-Aj9xiGO2HoPFM1ZlLhljqof9WVW6_3967cvB2DrOodTo22MUq457j0mf4s5XZUW76P-xxy8y08J7</recordid><startdate>20211019</startdate><enddate>20211019</enddate><creator>Carvajal, Ma. Faye Charmagne A.</creator><creator>Preston, Jonathan M.</creator><creator>Jamhawi, Nour M.</creator><creator>Sabo, T. Michael</creator><creator>Bhattacharya, Shibani</creator><creator>Aramini, James M.</creator><creator>Wittebort, Richard J.</creator><creator>Koder, Ronald L.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>The Biophysical Society</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0868-4972</orcidid><orcidid>https://orcid.org/0000-0002-9573-145X</orcidid></search><sort><creationdate>20211019</creationdate><title>Dynamics in natural and designed elastins and their relation to elastic fiber structure and recoil</title><author>Carvajal, Ma. Faye Charmagne A. ; Preston, Jonathan M. ; Jamhawi, Nour M. ; Sabo, T. Michael ; Bhattacharya, Shibani ; Aramini, James M. ; Wittebort, Richard J. ; Koder, Ronald L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-18a62b7bd2100d03a16a3c3ea364286e5652f3f2a49c366bd2d3bdadf9fdb66f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biophysics</topic><topic>Cattle</topic><topic>Elastic Tissue</topic><topic>Elastin</topic><topic>Extracellular Matrix</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Life Sciences & Biomedicine</topic><topic>Science & Technology</topic><topic>Tropoelastin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvajal, Ma. Faye Charmagne A.</creatorcontrib><creatorcontrib>Preston, Jonathan M.</creatorcontrib><creatorcontrib>Jamhawi, Nour M.</creatorcontrib><creatorcontrib>Sabo, T. Michael</creatorcontrib><creatorcontrib>Bhattacharya, Shibani</creatorcontrib><creatorcontrib>Aramini, James M.</creatorcontrib><creatorcontrib>Wittebort, Richard J.</creatorcontrib><creatorcontrib>Koder, Ronald L.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvajal, Ma. Faye Charmagne A.</au><au>Preston, Jonathan M.</au><au>Jamhawi, Nour M.</au><au>Sabo, T. Michael</au><au>Bhattacharya, Shibani</au><au>Aramini, James M.</au><au>Wittebort, Richard J.</au><au>Koder, Ronald L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics in natural and designed elastins and their relation to elastic fiber structure and recoil</atitle><jtitle>Biophysical journal</jtitle><stitle>BIOPHYS J</stitle><addtitle>Biophys J</addtitle><date>2021-10-19</date><risdate>2021</risdate><volume>120</volume><issue>20</issue><spage>4623</spage><epage>4634</epage><pages>4623-4634</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Elastin fibers assemble in the extracellular matrix from the precursor protein tropoelastin and provide the flexibility and spontaneous recoil required for arterial function. Unlike many proteins, a structure-function mechanism for elastin has been elusive. We have performed detailed NMR relaxation studies of the dynamics of the minielastins 24x′ and 20x′ using solution NMR, and of purified bovine elastin fibers in the presence and absence of mechanical stress using solid state NMR. The low sequence complexity of the minielastins enables us to determine average dynamical timescales and degrees of local ordering in the cross-link and hydrophobic modules separately using NMR relaxation by taking advantage of their residue-specific resolution. We find an extremely high degree of disorder, with order parameters for the entirety of the hydrophobic domains near zero, resembling that of simple chemical polymers and less than the order parameters that have been observed in other intrinsically disordered proteins. We find that average backbone order parameters in natural, purified elastin fibers are comparable to those found in 24x′ and 20x′ in solution. The difference in dynamics, compared with the minielastins, is that backbone correlation times are significantly slowed in purified elastin. Moreover, when elastin is mechanically stretched, the high chain disorder in purified elastin is retained, showing that any change in local ordering is below that detectable in our experiment. Combined with our previous finding of a 10-fold increase in the ordering of water when fully hydrated elastin fibers are stretched by 50%, these results support the hypothesis that stretch induced solvent ordering, i.e., the hydrophobic effect, is a key player in the elastic recoil of elastin as opposed to configurational entropy loss.</abstract><cop>CAMBRIDGE</cop><pub>Elsevier Inc</pub><pmid>34339635</pmid><doi>10.1016/j.bpj.2021.06.043</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0868-4972</orcidid><orcidid>https://orcid.org/0000-0002-9573-145X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2021-10, Vol.120 (20), p.4623-4634 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_webofscience_primary_000722268000009 |
source | MEDLINE; Cell Press Free Archives; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biophysics Cattle Elastic Tissue Elastin Extracellular Matrix Hydrophobic and Hydrophilic Interactions Life Sciences & Biomedicine Science & Technology Tropoelastin |
title | Dynamics in natural and designed elastins and their relation to elastic fiber structure and recoil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20in%20natural%20and%20designed%20elastins%20and%20their%20relation%20to%20elastic%20fiber%20structure%20and%20recoil&rft.jtitle=Biophysical%20journal&rft.au=Carvajal,%20Ma.%20Faye%20Charmagne%20A.&rft.date=2021-10-19&rft.volume=120&rft.issue=20&rft.spage=4623&rft.epage=4634&rft.pages=4623-4634&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2021.06.043&rft_dat=%3Cproquest_webof%3E2557544403%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557544403&rft_id=info:pmid/34339635&rft_els_id=S0006349521006366&rfr_iscdi=true |