An Observation About Pseudospectra
For epsilon > 0 and a bounded linear operator T acting on some Hilbert space, the epsilon-pseudospectrum of T is sigma(epsilon)(T) = {z is an element of C : parallel to(zI - T)(-1) parallel to > epsilon(-1)}. This note provides a characterization of those operators T satisfying sigma(epsilon)(...
Gespeichert in:
Veröffentlicht in: | Filomat 2021-01, Vol.35 (3), p.995-1000 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For epsilon > 0 and a bounded linear operator T acting on some Hilbert space, the epsilon-pseudospectrum of T is sigma(epsilon)(T) = {z is an element of C : parallel to(zI - T)(-1) parallel to > epsilon(-1)}. This note provides a characterization of those operators T satisfying sigma(epsilon)(T) = sigma(T) + B(0, epsilon) for all epsilon > 0. Here B(0, epsilon) = {z is an element of C : vertical bar z vertical bar < epsilon}. In particular, such operators on finite dimensional spaces must be normal. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2103995J |