An Observation About Pseudospectra

For epsilon > 0 and a bounded linear operator T acting on some Hilbert space, the epsilon-pseudospectrum of T is sigma(epsilon)(T) = {z is an element of C : parallel to(zI - T)(-1) parallel to > epsilon(-1)}. This note provides a characterization of those operators T satisfying sigma(epsilon)(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2021-01, Vol.35 (3), p.995-1000
Hauptverfasser: Jia, Boting, Feng, Youling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For epsilon > 0 and a bounded linear operator T acting on some Hilbert space, the epsilon-pseudospectrum of T is sigma(epsilon)(T) = {z is an element of C : parallel to(zI - T)(-1) parallel to > epsilon(-1)}. This note provides a characterization of those operators T satisfying sigma(epsilon)(T) = sigma(T) + B(0, epsilon) for all epsilon > 0. Here B(0, epsilon) = {z is an element of C : vertical bar z vertical bar < epsilon}. In particular, such operators on finite dimensional spaces must be normal.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2103995J