Diverse simulations of time-resolved photoluminescence in thin-film solar cells: A SnO2/CdSeyTe1−y case study
Time-resolved photoluminescence (TRPL) is widely used to measure carrier lifetime in thin-film solar cell absorbers. However, the injection dependence of data and frequent non-exponential decay shapes complicate the interpretation. Here, we develop a numerical model to simulate injection-dependent T...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2021-10, Vol.130 (16), Article 163105 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 130 |
creator | Moseley, John Krasikov, Dmitry Lee, Chungho Kuciauskas, Darius |
description | Time-resolved photoluminescence (TRPL) is widely used to measure carrier lifetime in thin-film solar cell absorbers. However, the injection dependence of data and frequent non-exponential decay shapes complicate the interpretation. Here, we develop a numerical model to simulate injection-dependent TRPL measurements in a SnO2/CdSeyTe1−y solar cell structure, considering parameters of interest to researchers in industry and academia. Previous simulations have shown that in low injection, excess electrons and holes injected by the laser pulse are rapidly separated in the electric field formed by the
p
n junction. As a result, at early times, the PL signal can decay faster than the Shockley–Read–Hall lifetime in the absorber bulk (
τ
bulk). Prior simulations have shown that the charge stored in the junction can slowly leak out to affect decays at late times. However, it has not been clear if and to what degree charge storage can affect the slopes extracted from TRPL decays—
τ
2—commonly cited as the TRPL-measured lifetime. Here, we show that charge storage can, in some cases, result in
τ
2 values that substantially overestimate
τ
bulk. Previous simulations indicate that high-injection conditions can screen the junction field and minimize charge separation. Here, we show that continued injection increases can drive down
τ
2 below
τ
bulk as radiative recombination becomes dominant. We catalog charge storage and radiative recombination impacts for a diverse set of material parameters and compare results to double-heterostructure models. |
doi_str_mv | 10.1063/5.0063028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000715601700003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2588102197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a9ed92b6508e6e5ce33d3637132740738eab79a20e93206676198984616b4d963</originalsourceid><addsrcrecordid>eNqN0M1u1DAQB_AIgcRSOPAGFpwApR3bG39wq1K-pEo9tJytrDPRukrsxXYW7Rtw5hH7JHibCk4gTuPDb2Y8_6p6SeGUguBnzSmUAkw9qlYUlK5l08DjagXAaK201E-rZyndAlCquF5V4cLtMSYkyU3z2GUXfCJhINlNWEdMYdxjT3bbkMM4T85jsugtEudJ3jpfD26cSFFdJBbHMb0n5-TaX7Gztr_Gww3Sux8_D8R2xw157g_PqydDNyZ88VBPqq8fP9y0n-vLq09f2vPL2nKqc91p7DXbiAYUCmwsct5zwSXlTK5BcoXdRuqOAWrOQAgpqFZarQUVm3WvBT-pXi1zQ8rOJOsy2q0N3qPNppzOlISCXi9oF8O3GVM2t2GOvvzLsEYpWjLTsqg3i7IxpBRxMLvopi4eDAVzDN005iH0YtViv-MmDGXtMazfHgAkbQRQWV7AW5fvA2_D7HNpfff_rUW_XfTxtPsp__zVX_E-xD_Q7PqB_wJ4H6-u</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588102197</pqid></control><display><type>article</type><title>Diverse simulations of time-resolved photoluminescence in thin-film solar cells: A SnO2/CdSeyTe1−y case study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Moseley, John ; Krasikov, Dmitry ; Lee, Chungho ; Kuciauskas, Darius</creator><creatorcontrib>Moseley, John ; Krasikov, Dmitry ; Lee, Chungho ; Kuciauskas, Darius ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Time-resolved photoluminescence (TRPL) is widely used to measure carrier lifetime in thin-film solar cell absorbers. However, the injection dependence of data and frequent non-exponential decay shapes complicate the interpretation. Here, we develop a numerical model to simulate injection-dependent TRPL measurements in a SnO2/CdSeyTe1−y solar cell structure, considering parameters of interest to researchers in industry and academia. Previous simulations have shown that in low injection, excess electrons and holes injected by the laser pulse are rapidly separated in the electric field formed by the
p
n junction. As a result, at early times, the PL signal can decay faster than the Shockley–Read–Hall lifetime in the absorber bulk (
τ
bulk). Prior simulations have shown that the charge stored in the junction can slowly leak out to affect decays at late times. However, it has not been clear if and to what degree charge storage can affect the slopes extracted from TRPL decays—
τ
2—commonly cited as the TRPL-measured lifetime. Here, we show that charge storage can, in some cases, result in
τ
2 values that substantially overestimate
τ
bulk. Previous simulations indicate that high-injection conditions can screen the junction field and minimize charge separation. Here, we show that continued injection increases can drive down
τ
2 below
τ
bulk as radiative recombination becomes dominant. We catalog charge storage and radiative recombination impacts for a diverse set of material parameters and compare results to double-heterostructure models.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0063028</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Absorbers ; Applied physics ; Carrier lifetime ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS,SOLAR ENERGY ; Decay rate ; Electric fields ; Heterostructures ; Mathematical models ; numerical methods ; Numerical models ; P-n junctions ; Parameters ; Photoluminescence ; Photovoltaic cells ; Physical Sciences ; Physics ; Physics, Applied ; Radiative recombination ; Science & Technology ; semiconductors ; Simulation ; Solar cells ; thin films ; time-resolved photoluminescence ; Tin dioxide</subject><ispartof>Journal of applied physics, 2021-10, Vol.130 (16), Article 163105</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000715601700003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-a9ed92b6508e6e5ce33d3637132740738eab79a20e93206676198984616b4d963</citedby><cites>FETCH-LOGICAL-c319t-a9ed92b6508e6e5ce33d3637132740738eab79a20e93206676198984616b4d963</cites><orcidid>0000-0001-8091-5718 ; 0000-0002-7090-9418 ; 0000-0001-8211-2337 ; 0000000270909418 ; 0000000182112337 ; 0000000180915718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0063028$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,781,785,795,886,4513,27928,27929,76388</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1832870$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moseley, John</creatorcontrib><creatorcontrib>Krasikov, Dmitry</creatorcontrib><creatorcontrib>Lee, Chungho</creatorcontrib><creatorcontrib>Kuciauskas, Darius</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Diverse simulations of time-resolved photoluminescence in thin-film solar cells: A SnO2/CdSeyTe1−y case study</title><title>Journal of applied physics</title><addtitle>J APPL PHYS</addtitle><description>Time-resolved photoluminescence (TRPL) is widely used to measure carrier lifetime in thin-film solar cell absorbers. However, the injection dependence of data and frequent non-exponential decay shapes complicate the interpretation. Here, we develop a numerical model to simulate injection-dependent TRPL measurements in a SnO2/CdSeyTe1−y solar cell structure, considering parameters of interest to researchers in industry and academia. Previous simulations have shown that in low injection, excess electrons and holes injected by the laser pulse are rapidly separated in the electric field formed by the
p
n junction. As a result, at early times, the PL signal can decay faster than the Shockley–Read–Hall lifetime in the absorber bulk (
τ
bulk). Prior simulations have shown that the charge stored in the junction can slowly leak out to affect decays at late times. However, it has not been clear if and to what degree charge storage can affect the slopes extracted from TRPL decays—
τ
2—commonly cited as the TRPL-measured lifetime. Here, we show that charge storage can, in some cases, result in
τ
2 values that substantially overestimate
τ
bulk. Previous simulations indicate that high-injection conditions can screen the junction field and minimize charge separation. Here, we show that continued injection increases can drive down
τ
2 below
τ
bulk as radiative recombination becomes dominant. We catalog charge storage and radiative recombination impacts for a diverse set of material parameters and compare results to double-heterostructure models.</description><subject>Absorbers</subject><subject>Applied physics</subject><subject>Carrier lifetime</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS,SOLAR ENERGY</subject><subject>Decay rate</subject><subject>Electric fields</subject><subject>Heterostructures</subject><subject>Mathematical models</subject><subject>numerical methods</subject><subject>Numerical models</subject><subject>P-n junctions</subject><subject>Parameters</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Radiative recombination</subject><subject>Science & Technology</subject><subject>semiconductors</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>thin films</subject><subject>time-resolved photoluminescence</subject><subject>Tin dioxide</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0M1u1DAQB_AIgcRSOPAGFpwApR3bG39wq1K-pEo9tJytrDPRukrsxXYW7Rtw5hH7JHibCk4gTuPDb2Y8_6p6SeGUguBnzSmUAkw9qlYUlK5l08DjagXAaK201E-rZyndAlCquF5V4cLtMSYkyU3z2GUXfCJhINlNWEdMYdxjT3bbkMM4T85jsugtEudJ3jpfD26cSFFdJBbHMb0n5-TaX7Gztr_Gww3Sux8_D8R2xw157g_PqydDNyZ88VBPqq8fP9y0n-vLq09f2vPL2nKqc91p7DXbiAYUCmwsct5zwSXlTK5BcoXdRuqOAWrOQAgpqFZarQUVm3WvBT-pXi1zQ8rOJOsy2q0N3qPNppzOlISCXi9oF8O3GVM2t2GOvvzLsEYpWjLTsqg3i7IxpBRxMLvopi4eDAVzDN005iH0YtViv-MmDGXtMazfHgAkbQRQWV7AW5fvA2_D7HNpfff_rUW_XfTxtPsp__zVX_E-xD_Q7PqB_wJ4H6-u</recordid><startdate>20211028</startdate><enddate>20211028</enddate><creator>Moseley, John</creator><creator>Krasikov, Dmitry</creator><creator>Lee, Chungho</creator><creator>Kuciauskas, Darius</creator><general>AIP Publishing</general><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8091-5718</orcidid><orcidid>https://orcid.org/0000-0002-7090-9418</orcidid><orcidid>https://orcid.org/0000-0001-8211-2337</orcidid><orcidid>https://orcid.org/0000000270909418</orcidid><orcidid>https://orcid.org/0000000182112337</orcidid><orcidid>https://orcid.org/0000000180915718</orcidid></search><sort><creationdate>20211028</creationdate><title>Diverse simulations of time-resolved photoluminescence in thin-film solar cells: A SnO2/CdSeyTe1−y case study</title><author>Moseley, John ; Krasikov, Dmitry ; Lee, Chungho ; Kuciauskas, Darius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a9ed92b6508e6e5ce33d3637132740738eab79a20e93206676198984616b4d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorbers</topic><topic>Applied physics</topic><topic>Carrier lifetime</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS,SOLAR ENERGY</topic><topic>Decay rate</topic><topic>Electric fields</topic><topic>Heterostructures</topic><topic>Mathematical models</topic><topic>numerical methods</topic><topic>Numerical models</topic><topic>P-n junctions</topic><topic>Parameters</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Radiative recombination</topic><topic>Science & Technology</topic><topic>semiconductors</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>thin films</topic><topic>time-resolved photoluminescence</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moseley, John</creatorcontrib><creatorcontrib>Krasikov, Dmitry</creatorcontrib><creatorcontrib>Lee, Chungho</creatorcontrib><creatorcontrib>Kuciauskas, Darius</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moseley, John</au><au>Krasikov, Dmitry</au><au>Lee, Chungho</au><au>Kuciauskas, Darius</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse simulations of time-resolved photoluminescence in thin-film solar cells: A SnO2/CdSeyTe1−y case study</atitle><jtitle>Journal of applied physics</jtitle><stitle>J APPL PHYS</stitle><date>2021-10-28</date><risdate>2021</risdate><volume>130</volume><issue>16</issue><artnum>163105</artnum><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Time-resolved photoluminescence (TRPL) is widely used to measure carrier lifetime in thin-film solar cell absorbers. However, the injection dependence of data and frequent non-exponential decay shapes complicate the interpretation. Here, we develop a numerical model to simulate injection-dependent TRPL measurements in a SnO2/CdSeyTe1−y solar cell structure, considering parameters of interest to researchers in industry and academia. Previous simulations have shown that in low injection, excess electrons and holes injected by the laser pulse are rapidly separated in the electric field formed by the
p
n junction. As a result, at early times, the PL signal can decay faster than the Shockley–Read–Hall lifetime in the absorber bulk (
τ
bulk). Prior simulations have shown that the charge stored in the junction can slowly leak out to affect decays at late times. However, it has not been clear if and to what degree charge storage can affect the slopes extracted from TRPL decays—
τ
2—commonly cited as the TRPL-measured lifetime. Here, we show that charge storage can, in some cases, result in
τ
2 values that substantially overestimate
τ
bulk. Previous simulations indicate that high-injection conditions can screen the junction field and minimize charge separation. Here, we show that continued injection increases can drive down
τ
2 below
τ
bulk as radiative recombination becomes dominant. We catalog charge storage and radiative recombination impacts for a diverse set of material parameters and compare results to double-heterostructure models.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><doi>10.1063/5.0063028</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8091-5718</orcidid><orcidid>https://orcid.org/0000-0002-7090-9418</orcidid><orcidid>https://orcid.org/0000-0001-8211-2337</orcidid><orcidid>https://orcid.org/0000000270909418</orcidid><orcidid>https://orcid.org/0000000182112337</orcidid><orcidid>https://orcid.org/0000000180915718</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2021-10, Vol.130 (16), Article 163105 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_webofscience_primary_000715601700003 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorbers Applied physics Carrier lifetime CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS,SOLAR ENERGY Decay rate Electric fields Heterostructures Mathematical models numerical methods Numerical models P-n junctions Parameters Photoluminescence Photovoltaic cells Physical Sciences Physics Physics, Applied Radiative recombination Science & Technology semiconductors Simulation Solar cells thin films time-resolved photoluminescence Tin dioxide |
title | Diverse simulations of time-resolved photoluminescence in thin-film solar cells: A SnO2/CdSeyTe1−y case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20simulations%20of%20time-resolved%20photoluminescence%20in%20thin-film%20solar%20cells:%20A%20SnO2/CdSeyTe1%E2%88%92y%20case%20study&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Moseley,%20John&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2021-10-28&rft.volume=130&rft.issue=16&rft.artnum=163105&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0063028&rft_dat=%3Cproquest_webof%3E2588102197%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588102197&rft_id=info:pmid/&rfr_iscdi=true |