Improving Ocean Data Services with Semantics and Quick Index

Massive ocean data acquired by various observing platforms and sensors poses new challenges to data management and utilization. Typically, it is difficult to find the desired data from the large amount of datasets efficiently and effectively. Most of existing methods for data discovery are based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer science and technology 2021-10, Vol.36 (5), p.963-984
Hauptverfasser: Ren, Xiao-Li, Ren, Kai-Jun, Xu, Zi-Chen, Li, Xiao-Yong, Zhou, Ao-Long, Song, Jun-Qiang, Deng, Ke-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Massive ocean data acquired by various observing platforms and sensors poses new challenges to data management and utilization. Typically, it is difficult to find the desired data from the large amount of datasets efficiently and effectively. Most of existing methods for data discovery are based on the keyword retrieval or direct semantic reasoning, and they are either limited in data access rate or do not take the time cost into account. In this paper, we creatively design and implement a novel system to alleviate the problem by introducing semantics with ontologies, which is referred to as Data Ontology and List-Based Publishing (DOLP). Specifically, we mainly improve the ocean data services in the following three aspects. First, we propose a unified semantic model called OEDO (Ocean Environmental Data Ontology) to represent heterogeneous ocean data by metadata and to be published as data services. Second, we propose an optimized quick service query list (QSQL) data structure for storing the pre-inferred semantically related services, and reducing the service querying time. Third, we propose two algorithms for optimizing QSQL hierarchically and horizontally, respectively, which aim to extend the semantics relationships of the data service and improve the data access rate. Experimental results prove that DOLP outperforms the benchmark methods. First, our QSQL-based data discovery methods obtain a higher recall rate than the keyword-based method, and are faster than the traditional semantic method based on direct reasoning. Second, DOLP can handle more complex semantic relationships than the existing methods.
ISSN:1000-9000
1860-4749
DOI:10.1007/s11390-021-1374-0