Mysterious oil spill on the Brazilian coast – Part 2: A probabilistic approach to fill gaps of uncertainties
Over 5000 tons of spilled oil reached the northeast coast of Brazil in 2019. The Laboratory for Computational Methods in Engineering (LAMCE/COPPE/UFRJ) employed time-reverse modeling and identify multiple potential source areas. As time-reverse modeling has many uncertainties, this article carried o...
Gespeichert in:
Veröffentlicht in: | Marine pollution bulletin 2021-12, Vol.173 (Pt B), p.113085-113085, Article 113085 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113085 |
---|---|
container_issue | Pt B |
container_start_page | 113085 |
container_title | Marine pollution bulletin |
container_volume | 173 |
creator | Zacharias, Daniel Constantino Gama, Carine Malagolini Harari, Joseph da Rocha, Rosmeri Porfirio Fornaro, Adalgiza |
description | Over 5000 tons of spilled oil reached the northeast coast of Brazil in 2019. The Laboratory for Computational Methods in Engineering (LAMCE/COPPE/UFRJ) employed time-reverse modeling and identify multiple potential source areas. As time-reverse modeling has many uncertainties, this article carried out a methodology study to mitigate them. A probabilistic modeling using Monte Carlo approach was developed to test these source areas with the Spill, Transport, and Fate Model (STFM) and a scenario tree methodology was used to select possible spill scenarios. To estimate the performance of Lagrangian models, two new model performance evaluations were added to Chang and Hanna (2004). The combination of probabilistic simulations, scenario tree analysis, and model performance evaluation proved to be a powerful tool for mitigating the uncertainties of time-reverse modeling, yielding good results and simple implementation.
[Display omitted]
•A method to assess the oil modeling uncertainties using Monte Carlo approach•The importance of subsurface oil drift in the 2019 spill has been confirmed.•Development of investigative oil spill modeling based on scenario tree approach |
doi_str_mv | 10.1016/j.marpolbul.2021.113085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2590127254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X2101119X</els_id><sourcerecordid>2590127254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-e24d72e9c025490f8355effa0a669eb6ab4269326ad4f05310803ae60be2bf093</originalsourceid><addsrcrecordid>eNqFkc-OFCEQh4nRuOPqKyiJFy89FtAN3d7Gjf-SNXrQxBuh6cJlwjQt0CbryXfwDX0Smcy6By-eCOGrH1X1EfKEwZYBk8_324NJSwzjGrYcONsyJqDv7pAN69XQCCHFXbIB4F0juPxyRh7kvAcAxRW7T85EqxhIxTdkfn-dCyYf10yjDzQvPgQaZ1qukL5M5ocP3szURpML_f3zF_1oUqH8Bd3RJcXRjPU9F2-pWerd2CtaInXHjK9mqZGOrrPFVIyfi8f8kNxzJmR8dHOek8-vX326eNtcfnjz7mJ32di27UuDvJ0Ux8HWAdoBXC-6Dp0zYKQccJRmbLkc6mRmah10gkEPwqCEEfnoYBDn5Nkptzb1bcVc9MFniyGYGeuomncDMK5qekWf_oPu45rm2p3mkgtoec9VpdSJsinmnNDpJfnq4Foz0Ecleq9vleijEn1SUisf3-Sv4wGn27q_DiqwOwFYF_LdY9LZeqxbm3xCW_QU_X8_-QN8BqGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623042827</pqid></control><display><type>article</type><title>Mysterious oil spill on the Brazilian coast – Part 2: A probabilistic approach to fill gaps of uncertainties</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zacharias, Daniel Constantino ; Gama, Carine Malagolini ; Harari, Joseph ; da Rocha, Rosmeri Porfirio ; Fornaro, Adalgiza</creator><creatorcontrib>Zacharias, Daniel Constantino ; Gama, Carine Malagolini ; Harari, Joseph ; da Rocha, Rosmeri Porfirio ; Fornaro, Adalgiza</creatorcontrib><description>Over 5000 tons of spilled oil reached the northeast coast of Brazil in 2019. The Laboratory for Computational Methods in Engineering (LAMCE/COPPE/UFRJ) employed time-reverse modeling and identify multiple potential source areas. As time-reverse modeling has many uncertainties, this article carried out a methodology study to mitigate them. A probabilistic modeling using Monte Carlo approach was developed to test these source areas with the Spill, Transport, and Fate Model (STFM) and a scenario tree methodology was used to select possible spill scenarios. To estimate the performance of Lagrangian models, two new model performance evaluations were added to Chang and Hanna (2004). The combination of probabilistic simulations, scenario tree analysis, and model performance evaluation proved to be a powerful tool for mitigating the uncertainties of time-reverse modeling, yielding good results and simple implementation.
[Display omitted]
•A method to assess the oil modeling uncertainties using Monte Carlo approach•The importance of subsurface oil drift in the 2019 spill has been confirmed.•Development of investigative oil spill modeling based on scenario tree approach</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2021.113085</identifier><identifier>PMID: 34710672</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Brazil ; Computer applications ; Modelling ; Monte Carlo Method ; Mysterious oil spill ; Northeast Brazilian coast oil spill ; Oil spills ; Performance evaluation ; Petroleum Pollution ; Probabilistic model ; Spill Transport and Fate Model ; Statistical methods ; STFM ; Uncertainty</subject><ispartof>Marine pollution bulletin, 2021-12, Vol.173 (Pt B), p.113085-113085, Article 113085</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-e24d72e9c025490f8355effa0a669eb6ab4269326ad4f05310803ae60be2bf093</citedby><cites>FETCH-LOGICAL-c448t-e24d72e9c025490f8355effa0a669eb6ab4269326ad4f05310803ae60be2bf093</cites><orcidid>0000-0002-6173-605X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.marpolbul.2021.113085$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34710672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zacharias, Daniel Constantino</creatorcontrib><creatorcontrib>Gama, Carine Malagolini</creatorcontrib><creatorcontrib>Harari, Joseph</creatorcontrib><creatorcontrib>da Rocha, Rosmeri Porfirio</creatorcontrib><creatorcontrib>Fornaro, Adalgiza</creatorcontrib><title>Mysterious oil spill on the Brazilian coast – Part 2: A probabilistic approach to fill gaps of uncertainties</title><title>Marine pollution bulletin</title><addtitle>Mar Pollut Bull</addtitle><description>Over 5000 tons of spilled oil reached the northeast coast of Brazil in 2019. The Laboratory for Computational Methods in Engineering (LAMCE/COPPE/UFRJ) employed time-reverse modeling and identify multiple potential source areas. As time-reverse modeling has many uncertainties, this article carried out a methodology study to mitigate them. A probabilistic modeling using Monte Carlo approach was developed to test these source areas with the Spill, Transport, and Fate Model (STFM) and a scenario tree methodology was used to select possible spill scenarios. To estimate the performance of Lagrangian models, two new model performance evaluations were added to Chang and Hanna (2004). The combination of probabilistic simulations, scenario tree analysis, and model performance evaluation proved to be a powerful tool for mitigating the uncertainties of time-reverse modeling, yielding good results and simple implementation.
[Display omitted]
•A method to assess the oil modeling uncertainties using Monte Carlo approach•The importance of subsurface oil drift in the 2019 spill has been confirmed.•Development of investigative oil spill modeling based on scenario tree approach</description><subject>Brazil</subject><subject>Computer applications</subject><subject>Modelling</subject><subject>Monte Carlo Method</subject><subject>Mysterious oil spill</subject><subject>Northeast Brazilian coast oil spill</subject><subject>Oil spills</subject><subject>Performance evaluation</subject><subject>Petroleum Pollution</subject><subject>Probabilistic model</subject><subject>Spill Transport and Fate Model</subject><subject>Statistical methods</subject><subject>STFM</subject><subject>Uncertainty</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc-OFCEQh4nRuOPqKyiJFy89FtAN3d7Gjf-SNXrQxBuh6cJlwjQt0CbryXfwDX0Smcy6By-eCOGrH1X1EfKEwZYBk8_324NJSwzjGrYcONsyJqDv7pAN69XQCCHFXbIB4F0juPxyRh7kvAcAxRW7T85EqxhIxTdkfn-dCyYf10yjDzQvPgQaZ1qukL5M5ocP3szURpML_f3zF_1oUqH8Bd3RJcXRjPU9F2-pWerd2CtaInXHjK9mqZGOrrPFVIyfi8f8kNxzJmR8dHOek8-vX326eNtcfnjz7mJ32di27UuDvJ0Ux8HWAdoBXC-6Dp0zYKQccJRmbLkc6mRmah10gkEPwqCEEfnoYBDn5Nkptzb1bcVc9MFniyGYGeuomncDMK5qekWf_oPu45rm2p3mkgtoec9VpdSJsinmnNDpJfnq4Foz0Ecleq9vleijEn1SUisf3-Sv4wGn27q_DiqwOwFYF_LdY9LZeqxbm3xCW_QU_X8_-QN8BqGY</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Zacharias, Daniel Constantino</creator><creator>Gama, Carine Malagolini</creator><creator>Harari, Joseph</creator><creator>da Rocha, Rosmeri Porfirio</creator><creator>Fornaro, Adalgiza</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6173-605X</orcidid></search><sort><creationdate>202112</creationdate><title>Mysterious oil spill on the Brazilian coast – Part 2: A probabilistic approach to fill gaps of uncertainties</title><author>Zacharias, Daniel Constantino ; Gama, Carine Malagolini ; Harari, Joseph ; da Rocha, Rosmeri Porfirio ; Fornaro, Adalgiza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-e24d72e9c025490f8355effa0a669eb6ab4269326ad4f05310803ae60be2bf093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brazil</topic><topic>Computer applications</topic><topic>Modelling</topic><topic>Monte Carlo Method</topic><topic>Mysterious oil spill</topic><topic>Northeast Brazilian coast oil spill</topic><topic>Oil spills</topic><topic>Performance evaluation</topic><topic>Petroleum Pollution</topic><topic>Probabilistic model</topic><topic>Spill Transport and Fate Model</topic><topic>Statistical methods</topic><topic>STFM</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zacharias, Daniel Constantino</creatorcontrib><creatorcontrib>Gama, Carine Malagolini</creatorcontrib><creatorcontrib>Harari, Joseph</creatorcontrib><creatorcontrib>da Rocha, Rosmeri Porfirio</creatorcontrib><creatorcontrib>Fornaro, Adalgiza</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zacharias, Daniel Constantino</au><au>Gama, Carine Malagolini</au><au>Harari, Joseph</au><au>da Rocha, Rosmeri Porfirio</au><au>Fornaro, Adalgiza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mysterious oil spill on the Brazilian coast – Part 2: A probabilistic approach to fill gaps of uncertainties</atitle><jtitle>Marine pollution bulletin</jtitle><addtitle>Mar Pollut Bull</addtitle><date>2021-12</date><risdate>2021</risdate><volume>173</volume><issue>Pt B</issue><spage>113085</spage><epage>113085</epage><pages>113085-113085</pages><artnum>113085</artnum><issn>0025-326X</issn><eissn>1879-3363</eissn><abstract>Over 5000 tons of spilled oil reached the northeast coast of Brazil in 2019. The Laboratory for Computational Methods in Engineering (LAMCE/COPPE/UFRJ) employed time-reverse modeling and identify multiple potential source areas. As time-reverse modeling has many uncertainties, this article carried out a methodology study to mitigate them. A probabilistic modeling using Monte Carlo approach was developed to test these source areas with the Spill, Transport, and Fate Model (STFM) and a scenario tree methodology was used to select possible spill scenarios. To estimate the performance of Lagrangian models, two new model performance evaluations were added to Chang and Hanna (2004). The combination of probabilistic simulations, scenario tree analysis, and model performance evaluation proved to be a powerful tool for mitigating the uncertainties of time-reverse modeling, yielding good results and simple implementation.
[Display omitted]
•A method to assess the oil modeling uncertainties using Monte Carlo approach•The importance of subsurface oil drift in the 2019 spill has been confirmed.•Development of investigative oil spill modeling based on scenario tree approach</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34710672</pmid><doi>10.1016/j.marpolbul.2021.113085</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6173-605X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-326X |
ispartof | Marine pollution bulletin, 2021-12, Vol.173 (Pt B), p.113085-113085, Article 113085 |
issn | 0025-326X 1879-3363 |
language | eng |
recordid | cdi_proquest_miscellaneous_2590127254 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Brazil Computer applications Modelling Monte Carlo Method Mysterious oil spill Northeast Brazilian coast oil spill Oil spills Performance evaluation Petroleum Pollution Probabilistic model Spill Transport and Fate Model Statistical methods STFM Uncertainty |
title | Mysterious oil spill on the Brazilian coast – Part 2: A probabilistic approach to fill gaps of uncertainties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mysterious%20oil%20spill%20on%20the%20Brazilian%20coast%20%E2%80%93%20Part%202:%20A%20probabilistic%20approach%20to%20fill%20gaps%20of%20uncertainties&rft.jtitle=Marine%20pollution%20bulletin&rft.au=Zacharias,%20Daniel%20Constantino&rft.date=2021-12&rft.volume=173&rft.issue=Pt%20B&rft.spage=113085&rft.epage=113085&rft.pages=113085-113085&rft.artnum=113085&rft.issn=0025-326X&rft.eissn=1879-3363&rft_id=info:doi/10.1016/j.marpolbul.2021.113085&rft_dat=%3Cproquest_cross%3E2590127254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623042827&rft_id=info:pmid/34710672&rft_els_id=S0025326X2101119X&rfr_iscdi=true |