Learning to isolate muons

A bstract Distinguishing between prompt muons produced in heavy boson decay and muons produced in association with heavy-flavor jet production is an important task in analysis of collider physics data. We explore whether there is information available in calorimeter deposits that is not captured by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2021-10, Vol.2021 (10), p.1-17, Article 200
Hauptverfasser: Collado, Julian, Bauer, Kevin, Witkowski, Edmund, Faucett, Taylor, Whiteson, Daniel, Baldi, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Distinguishing between prompt muons produced in heavy boson decay and muons produced in association with heavy-flavor jet production is an important task in analysis of collider physics data. We explore whether there is information available in calorimeter deposits that is not captured by the standard approach of isolation cones. We find that convolutional networks and particle-flow networks accessing the calorimeter cells surpass the performance of isolation cones, suggesting that the radial energy distribution and the angular structure of the calorimeter deposits surrounding the muon contain unused discrimination power. We assemble a small set of high-level observables which summarize the calorimeter information and close the performance gap with networks which analyze the calorimeter cells directly. These observables are theoretically well-defined and can be studied with collider data.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP10(2021)200