Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis
The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a...
Gespeichert in:
Veröffentlicht in: | Cell discovery 2021-10, Vol.7 (1), p.98-98, Article 98 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 1 |
container_start_page | 98 |
container_title | Cell discovery |
container_volume | 7 |
creator | Zhang, Fan Zeng, Qi-Yu Xu, Hao Xu, Ai-Ning Liu, Dian-Jia Li, Ning-Zhe Chen, Yi Jin, Yi Xu, Chun-Hui Feng, Chang-Zhou Zhang, Yuan-Liang Liu, Dan Liu, Na Xie, Yin-Yin Yu, Shan-He Yuan, Hao Xue, Kai Shi, Jing-Yi Liu, Ting Xi Xu, Peng-Fei Zhao, Wei-Li Zhou, Yi Wang, Lan Huang, Qiu-Hua Chen, Zhu Chen, Sai-Juan Zhou, Xiao-Long Sun, Xiao-Jian |
description | The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the
tars
-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the
tars
-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNA
Thr
, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for
tars
-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses. |
doi_str_mv | 10.1038/s41421-021-00332-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fd805927c9df437cbb23cd88b541200f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fd805927c9df437cbb23cd88b541200f</doaj_id><sourcerecordid>2586457387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-e119795259aa8fef1173e204e5c6ebcf1726be9d6a4c50e0ea68a2bbf89d0a683</originalsourceid><addsrcrecordid>eNp9kk1v1DAQQCMEolXpH-AUiQuXwPgrsS9IqwpopUqgQq9YjjPOepW1Fzsp6r9vsqmAcuAw8tjz5skaTVG8JvCOAJPvMyeckgqWAMZoJZ8VpxREXQlVy-d_5SfFec47ACCCSinFy-KE8Vo1VMFp8eMbDmhHf4elCV1p4_6Aoz_e3RTmQgy5jK4ct1huNjdH6PbrTXkw4_aXuc-lD2UeE-Zc-dBNFrsZ6X3sMWD2-VXxwpkh4_njeVbcfvr4_eKyuv7y-epic11ZQZqxQkJUowQVyhjp0BHSMKTAUdgaW-tIQ-sWVVcbbgUgoKmloW3rpOpgztlZcbV6u2h2-pD83qR7HY3Xx4eYem3S6O2A2nUShKKNVZ3jrLFtS5ntpGwFJxTAza4Pq-swtXvsLIYxmeGJ9Gkl-K3u452WgjeUwix4-yhI8eeEedR7ny0OgwkYp6ypkDUXDZPNjL75B93FKYV5VJrWhEENhPOZoitlU8w5ofv9GQJ62Qa9boOGJZZt0MtI2NqUZzj0mP6o_9P1AOzftoo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613060144</pqid></control><display><type>article</type><title>Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Fan ; Zeng, Qi-Yu ; Xu, Hao ; Xu, Ai-Ning ; Liu, Dian-Jia ; Li, Ning-Zhe ; Chen, Yi ; Jin, Yi ; Xu, Chun-Hui ; Feng, Chang-Zhou ; Zhang, Yuan-Liang ; Liu, Dan ; Liu, Na ; Xie, Yin-Yin ; Yu, Shan-He ; Yuan, Hao ; Xue, Kai ; Shi, Jing-Yi ; Liu, Ting Xi ; Xu, Peng-Fei ; Zhao, Wei-Li ; Zhou, Yi ; Wang, Lan ; Huang, Qiu-Hua ; Chen, Zhu ; Chen, Sai-Juan ; Zhou, Xiao-Long ; Sun, Xiao-Jian</creator><creatorcontrib>Zhang, Fan ; Zeng, Qi-Yu ; Xu, Hao ; Xu, Ai-Ning ; Liu, Dian-Jia ; Li, Ning-Zhe ; Chen, Yi ; Jin, Yi ; Xu, Chun-Hui ; Feng, Chang-Zhou ; Zhang, Yuan-Liang ; Liu, Dan ; Liu, Na ; Xie, Yin-Yin ; Yu, Shan-He ; Yuan, Hao ; Xue, Kai ; Shi, Jing-Yi ; Liu, Ting Xi ; Xu, Peng-Fei ; Zhao, Wei-Li ; Zhou, Yi ; Wang, Lan ; Huang, Qiu-Hua ; Chen, Zhu ; Chen, Sai-Juan ; Zhou, Xiao-Long ; Sun, Xiao-Jian</creatorcontrib><description>The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the
tars
-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the
tars
-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNA
Thr
, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for
tars
-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.</description><identifier>ISSN: 2056-5968</identifier><identifier>EISSN: 2056-5968</identifier><identifier>DOI: 10.1038/s41421-021-00332-8</identifier><identifier>PMID: 34697290</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>631/1647/48 ; 631/337/574/1793 ; 631/80/86/2366 ; Amino acids ; Aminoacylation ; Angiogenesis ; Biomedical and Life Sciences ; Cell Biology ; Cell Culture ; Cell Cycle Analysis ; Cell Physiology ; Embryos ; Gene regulation ; Kinases ; Life Sciences ; Mutants ; Phenotypes ; Phosphorylation ; Protein folding ; Stem Cells ; Threonine-tRNA ligase ; Transcriptomes ; tRNA</subject><ispartof>Cell discovery, 2021-10, Vol.7 (1), p.98-98, Article 98</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-e119795259aa8fef1173e204e5c6ebcf1726be9d6a4c50e0ea68a2bbf89d0a683</citedby><cites>FETCH-LOGICAL-c517t-e119795259aa8fef1173e204e5c6ebcf1726be9d6a4c50e0ea68a2bbf89d0a683</cites><orcidid>0000-0002-5701-0117 ; 0000-0002-6834-1616 ; 0000-0001-8826-4614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547220/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,27905,27906,41101,42170,51557,53772,53774</link.rule.ids></links><search><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Zeng, Qi-Yu</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Xu, Ai-Ning</creatorcontrib><creatorcontrib>Liu, Dian-Jia</creatorcontrib><creatorcontrib>Li, Ning-Zhe</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Jin, Yi</creatorcontrib><creatorcontrib>Xu, Chun-Hui</creatorcontrib><creatorcontrib>Feng, Chang-Zhou</creatorcontrib><creatorcontrib>Zhang, Yuan-Liang</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Xie, Yin-Yin</creatorcontrib><creatorcontrib>Yu, Shan-He</creatorcontrib><creatorcontrib>Yuan, Hao</creatorcontrib><creatorcontrib>Xue, Kai</creatorcontrib><creatorcontrib>Shi, Jing-Yi</creatorcontrib><creatorcontrib>Liu, Ting Xi</creatorcontrib><creatorcontrib>Xu, Peng-Fei</creatorcontrib><creatorcontrib>Zhao, Wei-Li</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Huang, Qiu-Hua</creatorcontrib><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Chen, Sai-Juan</creatorcontrib><creatorcontrib>Zhou, Xiao-Long</creatorcontrib><creatorcontrib>Sun, Xiao-Jian</creatorcontrib><title>Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis</title><title>Cell discovery</title><addtitle>Cell Discov</addtitle><description>The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the
tars
-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the
tars
-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNA
Thr
, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for
tars
-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.</description><subject>631/1647/48</subject><subject>631/337/574/1793</subject><subject>631/80/86/2366</subject><subject>Amino acids</subject><subject>Aminoacylation</subject><subject>Angiogenesis</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Cycle Analysis</subject><subject>Cell Physiology</subject><subject>Embryos</subject><subject>Gene regulation</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mutants</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Protein folding</subject><subject>Stem Cells</subject><subject>Threonine-tRNA ligase</subject><subject>Transcriptomes</subject><subject>tRNA</subject><issn>2056-5968</issn><issn>2056-5968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQQCMEolXpH-AUiQuXwPgrsS9IqwpopUqgQq9YjjPOepW1Fzsp6r9vsqmAcuAw8tjz5skaTVG8JvCOAJPvMyeckgqWAMZoJZ8VpxREXQlVy-d_5SfFec47ACCCSinFy-KE8Vo1VMFp8eMbDmhHf4elCV1p4_6Aoz_e3RTmQgy5jK4ct1huNjdH6PbrTXkw4_aXuc-lD2UeE-Zc-dBNFrsZ6X3sMWD2-VXxwpkh4_njeVbcfvr4_eKyuv7y-epic11ZQZqxQkJUowQVyhjp0BHSMKTAUdgaW-tIQ-sWVVcbbgUgoKmloW3rpOpgztlZcbV6u2h2-pD83qR7HY3Xx4eYem3S6O2A2nUShKKNVZ3jrLFtS5ntpGwFJxTAza4Pq-swtXvsLIYxmeGJ9Gkl-K3u452WgjeUwix4-yhI8eeEedR7ny0OgwkYp6ypkDUXDZPNjL75B93FKYV5VJrWhEENhPOZoitlU8w5ofv9GQJ62Qa9boOGJZZt0MtI2NqUZzj0mP6o_9P1AOzftoo</recordid><startdate>20211026</startdate><enddate>20211026</enddate><creator>Zhang, Fan</creator><creator>Zeng, Qi-Yu</creator><creator>Xu, Hao</creator><creator>Xu, Ai-Ning</creator><creator>Liu, Dian-Jia</creator><creator>Li, Ning-Zhe</creator><creator>Chen, Yi</creator><creator>Jin, Yi</creator><creator>Xu, Chun-Hui</creator><creator>Feng, Chang-Zhou</creator><creator>Zhang, Yuan-Liang</creator><creator>Liu, Dan</creator><creator>Liu, Na</creator><creator>Xie, Yin-Yin</creator><creator>Yu, Shan-He</creator><creator>Yuan, Hao</creator><creator>Xue, Kai</creator><creator>Shi, Jing-Yi</creator><creator>Liu, Ting Xi</creator><creator>Xu, Peng-Fei</creator><creator>Zhao, Wei-Li</creator><creator>Zhou, Yi</creator><creator>Wang, Lan</creator><creator>Huang, Qiu-Hua</creator><creator>Chen, Zhu</creator><creator>Chen, Sai-Juan</creator><creator>Zhou, Xiao-Long</creator><creator>Sun, Xiao-Jian</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5701-0117</orcidid><orcidid>https://orcid.org/0000-0002-6834-1616</orcidid><orcidid>https://orcid.org/0000-0001-8826-4614</orcidid></search><sort><creationdate>20211026</creationdate><title>Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis</title><author>Zhang, Fan ; Zeng, Qi-Yu ; Xu, Hao ; Xu, Ai-Ning ; Liu, Dian-Jia ; Li, Ning-Zhe ; Chen, Yi ; Jin, Yi ; Xu, Chun-Hui ; Feng, Chang-Zhou ; Zhang, Yuan-Liang ; Liu, Dan ; Liu, Na ; Xie, Yin-Yin ; Yu, Shan-He ; Yuan, Hao ; Xue, Kai ; Shi, Jing-Yi ; Liu, Ting Xi ; Xu, Peng-Fei ; Zhao, Wei-Li ; Zhou, Yi ; Wang, Lan ; Huang, Qiu-Hua ; Chen, Zhu ; Chen, Sai-Juan ; Zhou, Xiao-Long ; Sun, Xiao-Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-e119795259aa8fef1173e204e5c6ebcf1726be9d6a4c50e0ea68a2bbf89d0a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/48</topic><topic>631/337/574/1793</topic><topic>631/80/86/2366</topic><topic>Amino acids</topic><topic>Aminoacylation</topic><topic>Angiogenesis</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Cycle Analysis</topic><topic>Cell Physiology</topic><topic>Embryos</topic><topic>Gene regulation</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mutants</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Protein folding</topic><topic>Stem Cells</topic><topic>Threonine-tRNA ligase</topic><topic>Transcriptomes</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Zeng, Qi-Yu</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Xu, Ai-Ning</creatorcontrib><creatorcontrib>Liu, Dian-Jia</creatorcontrib><creatorcontrib>Li, Ning-Zhe</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Jin, Yi</creatorcontrib><creatorcontrib>Xu, Chun-Hui</creatorcontrib><creatorcontrib>Feng, Chang-Zhou</creatorcontrib><creatorcontrib>Zhang, Yuan-Liang</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Xie, Yin-Yin</creatorcontrib><creatorcontrib>Yu, Shan-He</creatorcontrib><creatorcontrib>Yuan, Hao</creatorcontrib><creatorcontrib>Xue, Kai</creatorcontrib><creatorcontrib>Shi, Jing-Yi</creatorcontrib><creatorcontrib>Liu, Ting Xi</creatorcontrib><creatorcontrib>Xu, Peng-Fei</creatorcontrib><creatorcontrib>Zhao, Wei-Li</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Huang, Qiu-Hua</creatorcontrib><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Chen, Sai-Juan</creatorcontrib><creatorcontrib>Zhou, Xiao-Long</creatorcontrib><creatorcontrib>Sun, Xiao-Jian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fan</au><au>Zeng, Qi-Yu</au><au>Xu, Hao</au><au>Xu, Ai-Ning</au><au>Liu, Dian-Jia</au><au>Li, Ning-Zhe</au><au>Chen, Yi</au><au>Jin, Yi</au><au>Xu, Chun-Hui</au><au>Feng, Chang-Zhou</au><au>Zhang, Yuan-Liang</au><au>Liu, Dan</au><au>Liu, Na</au><au>Xie, Yin-Yin</au><au>Yu, Shan-He</au><au>Yuan, Hao</au><au>Xue, Kai</au><au>Shi, Jing-Yi</au><au>Liu, Ting Xi</au><au>Xu, Peng-Fei</au><au>Zhao, Wei-Li</au><au>Zhou, Yi</au><au>Wang, Lan</au><au>Huang, Qiu-Hua</au><au>Chen, Zhu</au><au>Chen, Sai-Juan</au><au>Zhou, Xiao-Long</au><au>Sun, Xiao-Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis</atitle><jtitle>Cell discovery</jtitle><stitle>Cell Discov</stitle><date>2021-10-26</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>98</spage><epage>98</epage><pages>98-98</pages><artnum>98</artnum><issn>2056-5968</issn><eissn>2056-5968</eissn><abstract>The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the
tars
-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the
tars
-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNA
Thr
, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for
tars
-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>34697290</pmid><doi>10.1038/s41421-021-00332-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5701-0117</orcidid><orcidid>https://orcid.org/0000-0002-6834-1616</orcidid><orcidid>https://orcid.org/0000-0001-8826-4614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-5968 |
ispartof | Cell discovery, 2021-10, Vol.7 (1), p.98-98, Article 98 |
issn | 2056-5968 2056-5968 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fd805927c9df437cbb23cd88b541200f |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/1647/48 631/337/574/1793 631/80/86/2366 Amino acids Aminoacylation Angiogenesis Biomedical and Life Sciences Cell Biology Cell Culture Cell Cycle Analysis Cell Physiology Embryos Gene regulation Kinases Life Sciences Mutants Phenotypes Phosphorylation Protein folding Stem Cells Threonine-tRNA ligase Transcriptomes tRNA |
title | Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20and%20competitive%20functions%20of%20the%20AAR%20and%20UPR%20pathways%20in%20stress-induced%20angiogenesis&rft.jtitle=Cell%20discovery&rft.au=Zhang,%20Fan&rft.date=2021-10-26&rft.volume=7&rft.issue=1&rft.spage=98&rft.epage=98&rft.pages=98-98&rft.artnum=98&rft.issn=2056-5968&rft.eissn=2056-5968&rft_id=info:doi/10.1038/s41421-021-00332-8&rft_dat=%3Cproquest_doaj_%3E2586457387%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613060144&rft_id=info:pmid/34697290&rft_doaj_id=oai_doaj_org_article_fd805927c9df437cbb23cd88b541200f&rfr_iscdi=true |