Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis

The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell discovery 2021-10, Vol.7 (1), p.98-98, Article 98
Hauptverfasser: Zhang, Fan, Zeng, Qi-Yu, Xu, Hao, Xu, Ai-Ning, Liu, Dian-Jia, Li, Ning-Zhe, Chen, Yi, Jin, Yi, Xu, Chun-Hui, Feng, Chang-Zhou, Zhang, Yuan-Liang, Liu, Dan, Liu, Na, Xie, Yin-Yin, Yu, Shan-He, Yuan, Hao, Xue, Kai, Shi, Jing-Yi, Liu, Ting Xi, Xu, Peng-Fei, Zhao, Wei-Li, Zhou, Yi, Wang, Lan, Huang, Qiu-Hua, Chen, Zhu, Chen, Sai-Juan, Zhou, Xiao-Long, Sun, Xiao-Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 98
container_title Cell discovery
container_volume 7
creator Zhang, Fan
Zeng, Qi-Yu
Xu, Hao
Xu, Ai-Ning
Liu, Dian-Jia
Li, Ning-Zhe
Chen, Yi
Jin, Yi
Xu, Chun-Hui
Feng, Chang-Zhou
Zhang, Yuan-Liang
Liu, Dan
Liu, Na
Xie, Yin-Yin
Yu, Shan-He
Yuan, Hao
Xue, Kai
Shi, Jing-Yi
Liu, Ting Xi
Xu, Peng-Fei
Zhao, Wei-Li
Zhou, Yi
Wang, Lan
Huang, Qiu-Hua
Chen, Zhu
Chen, Sai-Juan
Zhou, Xiao-Long
Sun, Xiao-Jian
description The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars -mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars -mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNA Thr , which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars -deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.
doi_str_mv 10.1038/s41421-021-00332-8
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fd805927c9df437cbb23cd88b541200f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fd805927c9df437cbb23cd88b541200f</doaj_id><sourcerecordid>2586457387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-e119795259aa8fef1173e204e5c6ebcf1726be9d6a4c50e0ea68a2bbf89d0a683</originalsourceid><addsrcrecordid>eNp9kk1v1DAQQCMEolXpH-AUiQuXwPgrsS9IqwpopUqgQq9YjjPOepW1Fzsp6r9vsqmAcuAw8tjz5skaTVG8JvCOAJPvMyeckgqWAMZoJZ8VpxREXQlVy-d_5SfFec47ACCCSinFy-KE8Vo1VMFp8eMbDmhHf4elCV1p4_6Aoz_e3RTmQgy5jK4ct1huNjdH6PbrTXkw4_aXuc-lD2UeE-Zc-dBNFrsZ6X3sMWD2-VXxwpkh4_njeVbcfvr4_eKyuv7y-epic11ZQZqxQkJUowQVyhjp0BHSMKTAUdgaW-tIQ-sWVVcbbgUgoKmloW3rpOpgztlZcbV6u2h2-pD83qR7HY3Xx4eYem3S6O2A2nUShKKNVZ3jrLFtS5ntpGwFJxTAza4Pq-swtXvsLIYxmeGJ9Gkl-K3u452WgjeUwix4-yhI8eeEedR7ny0OgwkYp6ypkDUXDZPNjL75B93FKYV5VJrWhEENhPOZoitlU8w5ofv9GQJ62Qa9boOGJZZt0MtI2NqUZzj0mP6o_9P1AOzftoo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613060144</pqid></control><display><type>article</type><title>Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Fan ; Zeng, Qi-Yu ; Xu, Hao ; Xu, Ai-Ning ; Liu, Dian-Jia ; Li, Ning-Zhe ; Chen, Yi ; Jin, Yi ; Xu, Chun-Hui ; Feng, Chang-Zhou ; Zhang, Yuan-Liang ; Liu, Dan ; Liu, Na ; Xie, Yin-Yin ; Yu, Shan-He ; Yuan, Hao ; Xue, Kai ; Shi, Jing-Yi ; Liu, Ting Xi ; Xu, Peng-Fei ; Zhao, Wei-Li ; Zhou, Yi ; Wang, Lan ; Huang, Qiu-Hua ; Chen, Zhu ; Chen, Sai-Juan ; Zhou, Xiao-Long ; Sun, Xiao-Jian</creator><creatorcontrib>Zhang, Fan ; Zeng, Qi-Yu ; Xu, Hao ; Xu, Ai-Ning ; Liu, Dian-Jia ; Li, Ning-Zhe ; Chen, Yi ; Jin, Yi ; Xu, Chun-Hui ; Feng, Chang-Zhou ; Zhang, Yuan-Liang ; Liu, Dan ; Liu, Na ; Xie, Yin-Yin ; Yu, Shan-He ; Yuan, Hao ; Xue, Kai ; Shi, Jing-Yi ; Liu, Ting Xi ; Xu, Peng-Fei ; Zhao, Wei-Li ; Zhou, Yi ; Wang, Lan ; Huang, Qiu-Hua ; Chen, Zhu ; Chen, Sai-Juan ; Zhou, Xiao-Long ; Sun, Xiao-Jian</creatorcontrib><description>The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars -mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars -mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNA Thr , which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars -deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.</description><identifier>ISSN: 2056-5968</identifier><identifier>EISSN: 2056-5968</identifier><identifier>DOI: 10.1038/s41421-021-00332-8</identifier><identifier>PMID: 34697290</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>631/1647/48 ; 631/337/574/1793 ; 631/80/86/2366 ; Amino acids ; Aminoacylation ; Angiogenesis ; Biomedical and Life Sciences ; Cell Biology ; Cell Culture ; Cell Cycle Analysis ; Cell Physiology ; Embryos ; Gene regulation ; Kinases ; Life Sciences ; Mutants ; Phenotypes ; Phosphorylation ; Protein folding ; Stem Cells ; Threonine-tRNA ligase ; Transcriptomes ; tRNA</subject><ispartof>Cell discovery, 2021-10, Vol.7 (1), p.98-98, Article 98</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-e119795259aa8fef1173e204e5c6ebcf1726be9d6a4c50e0ea68a2bbf89d0a683</citedby><cites>FETCH-LOGICAL-c517t-e119795259aa8fef1173e204e5c6ebcf1726be9d6a4c50e0ea68a2bbf89d0a683</cites><orcidid>0000-0002-5701-0117 ; 0000-0002-6834-1616 ; 0000-0001-8826-4614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547220/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,27905,27906,41101,42170,51557,53772,53774</link.rule.ids></links><search><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Zeng, Qi-Yu</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Xu, Ai-Ning</creatorcontrib><creatorcontrib>Liu, Dian-Jia</creatorcontrib><creatorcontrib>Li, Ning-Zhe</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Jin, Yi</creatorcontrib><creatorcontrib>Xu, Chun-Hui</creatorcontrib><creatorcontrib>Feng, Chang-Zhou</creatorcontrib><creatorcontrib>Zhang, Yuan-Liang</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Xie, Yin-Yin</creatorcontrib><creatorcontrib>Yu, Shan-He</creatorcontrib><creatorcontrib>Yuan, Hao</creatorcontrib><creatorcontrib>Xue, Kai</creatorcontrib><creatorcontrib>Shi, Jing-Yi</creatorcontrib><creatorcontrib>Liu, Ting Xi</creatorcontrib><creatorcontrib>Xu, Peng-Fei</creatorcontrib><creatorcontrib>Zhao, Wei-Li</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Huang, Qiu-Hua</creatorcontrib><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Chen, Sai-Juan</creatorcontrib><creatorcontrib>Zhou, Xiao-Long</creatorcontrib><creatorcontrib>Sun, Xiao-Jian</creatorcontrib><title>Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis</title><title>Cell discovery</title><addtitle>Cell Discov</addtitle><description>The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars -mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars -mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNA Thr , which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars -deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.</description><subject>631/1647/48</subject><subject>631/337/574/1793</subject><subject>631/80/86/2366</subject><subject>Amino acids</subject><subject>Aminoacylation</subject><subject>Angiogenesis</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Cycle Analysis</subject><subject>Cell Physiology</subject><subject>Embryos</subject><subject>Gene regulation</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mutants</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Protein folding</subject><subject>Stem Cells</subject><subject>Threonine-tRNA ligase</subject><subject>Transcriptomes</subject><subject>tRNA</subject><issn>2056-5968</issn><issn>2056-5968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQQCMEolXpH-AUiQuXwPgrsS9IqwpopUqgQq9YjjPOepW1Fzsp6r9vsqmAcuAw8tjz5skaTVG8JvCOAJPvMyeckgqWAMZoJZ8VpxREXQlVy-d_5SfFec47ACCCSinFy-KE8Vo1VMFp8eMbDmhHf4elCV1p4_6Aoz_e3RTmQgy5jK4ct1huNjdH6PbrTXkw4_aXuc-lD2UeE-Zc-dBNFrsZ6X3sMWD2-VXxwpkh4_njeVbcfvr4_eKyuv7y-epic11ZQZqxQkJUowQVyhjp0BHSMKTAUdgaW-tIQ-sWVVcbbgUgoKmloW3rpOpgztlZcbV6u2h2-pD83qR7HY3Xx4eYem3S6O2A2nUShKKNVZ3jrLFtS5ntpGwFJxTAza4Pq-swtXvsLIYxmeGJ9Gkl-K3u452WgjeUwix4-yhI8eeEedR7ny0OgwkYp6ypkDUXDZPNjL75B93FKYV5VJrWhEENhPOZoitlU8w5ofv9GQJ62Qa9boOGJZZt0MtI2NqUZzj0mP6o_9P1AOzftoo</recordid><startdate>20211026</startdate><enddate>20211026</enddate><creator>Zhang, Fan</creator><creator>Zeng, Qi-Yu</creator><creator>Xu, Hao</creator><creator>Xu, Ai-Ning</creator><creator>Liu, Dian-Jia</creator><creator>Li, Ning-Zhe</creator><creator>Chen, Yi</creator><creator>Jin, Yi</creator><creator>Xu, Chun-Hui</creator><creator>Feng, Chang-Zhou</creator><creator>Zhang, Yuan-Liang</creator><creator>Liu, Dan</creator><creator>Liu, Na</creator><creator>Xie, Yin-Yin</creator><creator>Yu, Shan-He</creator><creator>Yuan, Hao</creator><creator>Xue, Kai</creator><creator>Shi, Jing-Yi</creator><creator>Liu, Ting Xi</creator><creator>Xu, Peng-Fei</creator><creator>Zhao, Wei-Li</creator><creator>Zhou, Yi</creator><creator>Wang, Lan</creator><creator>Huang, Qiu-Hua</creator><creator>Chen, Zhu</creator><creator>Chen, Sai-Juan</creator><creator>Zhou, Xiao-Long</creator><creator>Sun, Xiao-Jian</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5701-0117</orcidid><orcidid>https://orcid.org/0000-0002-6834-1616</orcidid><orcidid>https://orcid.org/0000-0001-8826-4614</orcidid></search><sort><creationdate>20211026</creationdate><title>Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis</title><author>Zhang, Fan ; Zeng, Qi-Yu ; Xu, Hao ; Xu, Ai-Ning ; Liu, Dian-Jia ; Li, Ning-Zhe ; Chen, Yi ; Jin, Yi ; Xu, Chun-Hui ; Feng, Chang-Zhou ; Zhang, Yuan-Liang ; Liu, Dan ; Liu, Na ; Xie, Yin-Yin ; Yu, Shan-He ; Yuan, Hao ; Xue, Kai ; Shi, Jing-Yi ; Liu, Ting Xi ; Xu, Peng-Fei ; Zhao, Wei-Li ; Zhou, Yi ; Wang, Lan ; Huang, Qiu-Hua ; Chen, Zhu ; Chen, Sai-Juan ; Zhou, Xiao-Long ; Sun, Xiao-Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-e119795259aa8fef1173e204e5c6ebcf1726be9d6a4c50e0ea68a2bbf89d0a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/48</topic><topic>631/337/574/1793</topic><topic>631/80/86/2366</topic><topic>Amino acids</topic><topic>Aminoacylation</topic><topic>Angiogenesis</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Cycle Analysis</topic><topic>Cell Physiology</topic><topic>Embryos</topic><topic>Gene regulation</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mutants</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Protein folding</topic><topic>Stem Cells</topic><topic>Threonine-tRNA ligase</topic><topic>Transcriptomes</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Zeng, Qi-Yu</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Xu, Ai-Ning</creatorcontrib><creatorcontrib>Liu, Dian-Jia</creatorcontrib><creatorcontrib>Li, Ning-Zhe</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Jin, Yi</creatorcontrib><creatorcontrib>Xu, Chun-Hui</creatorcontrib><creatorcontrib>Feng, Chang-Zhou</creatorcontrib><creatorcontrib>Zhang, Yuan-Liang</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Xie, Yin-Yin</creatorcontrib><creatorcontrib>Yu, Shan-He</creatorcontrib><creatorcontrib>Yuan, Hao</creatorcontrib><creatorcontrib>Xue, Kai</creatorcontrib><creatorcontrib>Shi, Jing-Yi</creatorcontrib><creatorcontrib>Liu, Ting Xi</creatorcontrib><creatorcontrib>Xu, Peng-Fei</creatorcontrib><creatorcontrib>Zhao, Wei-Li</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Huang, Qiu-Hua</creatorcontrib><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Chen, Sai-Juan</creatorcontrib><creatorcontrib>Zhou, Xiao-Long</creatorcontrib><creatorcontrib>Sun, Xiao-Jian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fan</au><au>Zeng, Qi-Yu</au><au>Xu, Hao</au><au>Xu, Ai-Ning</au><au>Liu, Dian-Jia</au><au>Li, Ning-Zhe</au><au>Chen, Yi</au><au>Jin, Yi</au><au>Xu, Chun-Hui</au><au>Feng, Chang-Zhou</au><au>Zhang, Yuan-Liang</au><au>Liu, Dan</au><au>Liu, Na</au><au>Xie, Yin-Yin</au><au>Yu, Shan-He</au><au>Yuan, Hao</au><au>Xue, Kai</au><au>Shi, Jing-Yi</au><au>Liu, Ting Xi</au><au>Xu, Peng-Fei</au><au>Zhao, Wei-Li</au><au>Zhou, Yi</au><au>Wang, Lan</au><au>Huang, Qiu-Hua</au><au>Chen, Zhu</au><au>Chen, Sai-Juan</au><au>Zhou, Xiao-Long</au><au>Sun, Xiao-Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis</atitle><jtitle>Cell discovery</jtitle><stitle>Cell Discov</stitle><date>2021-10-26</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>98</spage><epage>98</epage><pages>98-98</pages><artnum>98</artnum><issn>2056-5968</issn><eissn>2056-5968</eissn><abstract>The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars -mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars -mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNA Thr , which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars -deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>34697290</pmid><doi>10.1038/s41421-021-00332-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5701-0117</orcidid><orcidid>https://orcid.org/0000-0002-6834-1616</orcidid><orcidid>https://orcid.org/0000-0001-8826-4614</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-5968
ispartof Cell discovery, 2021-10, Vol.7 (1), p.98-98, Article 98
issn 2056-5968
2056-5968
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fd805927c9df437cbb23cd88b541200f
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 631/1647/48
631/337/574/1793
631/80/86/2366
Amino acids
Aminoacylation
Angiogenesis
Biomedical and Life Sciences
Cell Biology
Cell Culture
Cell Cycle Analysis
Cell Physiology
Embryos
Gene regulation
Kinases
Life Sciences
Mutants
Phenotypes
Phosphorylation
Protein folding
Stem Cells
Threonine-tRNA ligase
Transcriptomes
tRNA
title Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20and%20competitive%20functions%20of%20the%20AAR%20and%20UPR%20pathways%20in%20stress-induced%20angiogenesis&rft.jtitle=Cell%20discovery&rft.au=Zhang,%20Fan&rft.date=2021-10-26&rft.volume=7&rft.issue=1&rft.spage=98&rft.epage=98&rft.pages=98-98&rft.artnum=98&rft.issn=2056-5968&rft.eissn=2056-5968&rft_id=info:doi/10.1038/s41421-021-00332-8&rft_dat=%3Cproquest_doaj_%3E2586457387%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613060144&rft_id=info:pmid/34697290&rft_doaj_id=oai_doaj_org_article_fd805927c9df437cbb23cd88b541200f&rfr_iscdi=true