Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes

A flexible brush mechanism is designed and mounted at the end of a seven-degree-of-freedom robotic arm to despin a tumbling target. The dynamics model of the flexible brush is established using the absolute nodal coordinate method (ANCF), and its contact collision with the solar wing of the tumbling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Aerospace Engineering 2021-09, Vol.2021, p.1-9, Article 6196556
Hauptverfasser: Sun, Shengxin, Wei, Cheng, Huang, Zhuoran, Wu, Hao, Zhang, Haibo, Lu, Jianchun, Du, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title International Journal of Aerospace Engineering
container_volume 2021
creator Sun, Shengxin
Wei, Cheng
Huang, Zhuoran
Wu, Hao
Zhang, Haibo
Lu, Jianchun
Du, Yan
description A flexible brush mechanism is designed and mounted at the end of a seven-degree-of-freedom robotic arm to despin a tumbling target. The dynamics model of the flexible brush is established using the absolute nodal coordinate method (ANCF), and its contact collision with the solar wing of the tumbling target is analysed. The H∞ optimal control is proposed for a seven-degree-of-freedom robotic arm during despinning of a tumbling target while ensuring the global robustness and stability. Simulations verify that the despinning strategy can successfully eliminate the rotation speed and is feasible and effective.
doi_str_mv 10.1155/2021/6196556
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000709716900001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696844954</galeid><doaj_id>oai_doaj_org_article_552f6b73d52041049662ed267fdaae7a</doaj_id><sourcerecordid>A696844954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-6458f9c14b61dc04b79729b84d1832d3fc3d9e0c2bacffe54e2e14aaa00882573</originalsourceid><addsrcrecordid>eNqNkktvEzEUhUcIJEphxw8YiRWCtLbj1yxDoG2kSog-1pbHvk4dTexge2j59zhNlSoSQsgLH1995_jauk3zHqMTjBk7JYjgU447zhh_0RxhLsWEdYK-3GvOXzdvcl4hxBET7Kj5MbN6U_wvaOcxlBSHNrr2eqMNtFexj6X9CnnjQ_Bh2d6M6354FDotobS3eXs4G-DB9wO0X9KY7yC_bV45PWR497QfN7dn327mF5PL7-eL-exyYhiiZcIpk64zmPYcW4NoLzpBul5Si-WU2KkzU9sBMqTXxjlgFAhgqrVGSErCxPS4WexybdQrtUl-rdNvFbVXj4WYlkqn4s0AijHieC-mlhFEMaL1GwhYwoWzWoPQNevDLmuT4s8RclGrOKZQ21eEScKpkFw-U0tdQ31wsSRt1j4bNeMdl5R2jFbq5C9UXRbW3sQAztf6geHjgaEyBR7KUo85q8X11SH7eceaFHNO4PYPx0htZ0BtZ0A9zUDFP-3we-ijy8ZDMLC3IIQE6gTmXVUIV1r-Pz33RRcfwzyOoTxfdOeD1ff-3239ASsAzZo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582647868</pqid></control><display><type>article</type><title>Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Sun, Shengxin ; Wei, Cheng ; Huang, Zhuoran ; Wu, Hao ; Zhang, Haibo ; Lu, Jianchun ; Du, Yan</creator><contributor>Wu, Shunan ; Shunan Wu</contributor><creatorcontrib>Sun, Shengxin ; Wei, Cheng ; Huang, Zhuoran ; Wu, Hao ; Zhang, Haibo ; Lu, Jianchun ; Du, Yan ; Wu, Shunan ; Shunan Wu</creatorcontrib><description>A flexible brush mechanism is designed and mounted at the end of a seven-degree-of-freedom robotic arm to despin a tumbling target. The dynamics model of the flexible brush is established using the absolute nodal coordinate method (ANCF), and its contact collision with the solar wing of the tumbling target is analysed. The H∞ optimal control is proposed for a seven-degree-of-freedom robotic arm during despinning of a tumbling target while ensuring the global robustness and stability. Simulations verify that the despinning strategy can successfully eliminate the rotation speed and is feasible and effective.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2021/6196556</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Adaptive control ; Aerospace engineering ; Analysis ; Closed loop systems ; Controllers ; Degrees of freedom ; Design ; Energy ; Engineering ; Engineering, Aerospace ; H-infinity control ; Neural networks ; Optimal control ; Robot arms ; Robot control ; Robotics ; Robots ; Science &amp; Technology ; Space robots ; Spin reduction ; Technology ; Tumbling ; Velocity</subject><ispartof>International Journal of Aerospace Engineering, 2021-09, Vol.2021, p.1-9, Article 6196556</ispartof><rights>Copyright © 2021 Shengxin Sun et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Shengxin Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000709716900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c504t-6458f9c14b61dc04b79729b84d1832d3fc3d9e0c2bacffe54e2e14aaa00882573</citedby><cites>FETCH-LOGICAL-c504t-6458f9c14b61dc04b79729b84d1832d3fc3d9e0c2bacffe54e2e14aaa00882573</cites><orcidid>0000-0002-7025-3279 ; 0000-0001-8846-7817 ; 0000-0002-4464-6634 ; 0000-0003-4531-4903 ; 0000-0001-6214-813X ; 0000-0003-1754-7056 ; 0000-0003-2475-4504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,879,2106,2118,27933,27934,39267</link.rule.ids></links><search><contributor>Wu, Shunan</contributor><contributor>Shunan Wu</contributor><creatorcontrib>Sun, Shengxin</creatorcontrib><creatorcontrib>Wei, Cheng</creatorcontrib><creatorcontrib>Huang, Zhuoran</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Zhang, Haibo</creatorcontrib><creatorcontrib>Lu, Jianchun</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><title>Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes</title><title>International Journal of Aerospace Engineering</title><addtitle>INT J AEROSPACE ENG</addtitle><description>A flexible brush mechanism is designed and mounted at the end of a seven-degree-of-freedom robotic arm to despin a tumbling target. The dynamics model of the flexible brush is established using the absolute nodal coordinate method (ANCF), and its contact collision with the solar wing of the tumbling target is analysed. The H∞ optimal control is proposed for a seven-degree-of-freedom robotic arm during despinning of a tumbling target while ensuring the global robustness and stability. Simulations verify that the despinning strategy can successfully eliminate the rotation speed and is feasible and effective.</description><subject>Adaptive control</subject><subject>Aerospace engineering</subject><subject>Analysis</subject><subject>Closed loop systems</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>Design</subject><subject>Energy</subject><subject>Engineering</subject><subject>Engineering, Aerospace</subject><subject>H-infinity control</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Science &amp; Technology</subject><subject>Space robots</subject><subject>Spin reduction</subject><subject>Technology</subject><subject>Tumbling</subject><subject>Velocity</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktvEzEUhUcIJEphxw8YiRWCtLbj1yxDoG2kSog-1pbHvk4dTexge2j59zhNlSoSQsgLH1995_jauk3zHqMTjBk7JYjgU447zhh_0RxhLsWEdYK-3GvOXzdvcl4hxBET7Kj5MbN6U_wvaOcxlBSHNrr2eqMNtFexj6X9CnnjQ_Bh2d6M6354FDotobS3eXs4G-DB9wO0X9KY7yC_bV45PWR497QfN7dn327mF5PL7-eL-exyYhiiZcIpk64zmPYcW4NoLzpBul5Si-WU2KkzU9sBMqTXxjlgFAhgqrVGSErCxPS4WexybdQrtUl-rdNvFbVXj4WYlkqn4s0AijHieC-mlhFEMaL1GwhYwoWzWoPQNevDLmuT4s8RclGrOKZQ21eEScKpkFw-U0tdQ31wsSRt1j4bNeMdl5R2jFbq5C9UXRbW3sQAztf6geHjgaEyBR7KUo85q8X11SH7eceaFHNO4PYPx0htZ0BtZ0A9zUDFP-3we-ijy8ZDMLC3IIQE6gTmXVUIV1r-Pz33RRcfwzyOoTxfdOeD1ff-3239ASsAzZo</recordid><startdate>20210926</startdate><enddate>20210926</enddate><creator>Sun, Shengxin</creator><creator>Wei, Cheng</creator><creator>Huang, Zhuoran</creator><creator>Wu, Hao</creator><creator>Zhang, Haibo</creator><creator>Lu, Jianchun</creator><creator>Du, Yan</creator><general>Hindawi</general><general>Hindawi Publishing Group</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7025-3279</orcidid><orcidid>https://orcid.org/0000-0001-8846-7817</orcidid><orcidid>https://orcid.org/0000-0002-4464-6634</orcidid><orcidid>https://orcid.org/0000-0003-4531-4903</orcidid><orcidid>https://orcid.org/0000-0001-6214-813X</orcidid><orcidid>https://orcid.org/0000-0003-1754-7056</orcidid><orcidid>https://orcid.org/0000-0003-2475-4504</orcidid></search><sort><creationdate>20210926</creationdate><title>Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes</title><author>Sun, Shengxin ; Wei, Cheng ; Huang, Zhuoran ; Wu, Hao ; Zhang, Haibo ; Lu, Jianchun ; Du, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-6458f9c14b61dc04b79729b84d1832d3fc3d9e0c2bacffe54e2e14aaa00882573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Aerospace engineering</topic><topic>Analysis</topic><topic>Closed loop systems</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>Design</topic><topic>Energy</topic><topic>Engineering</topic><topic>Engineering, Aerospace</topic><topic>H-infinity control</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Science &amp; Technology</topic><topic>Space robots</topic><topic>Spin reduction</topic><topic>Technology</topic><topic>Tumbling</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shengxin</creatorcontrib><creatorcontrib>Wei, Cheng</creatorcontrib><creatorcontrib>Huang, Zhuoran</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Zhang, Haibo</creatorcontrib><creatorcontrib>Lu, Jianchun</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International Journal of Aerospace Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shengxin</au><au>Wei, Cheng</au><au>Huang, Zhuoran</au><au>Wu, Hao</au><au>Zhang, Haibo</au><au>Lu, Jianchun</au><au>Du, Yan</au><au>Wu, Shunan</au><au>Shunan Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes</atitle><jtitle>International Journal of Aerospace Engineering</jtitle><stitle>INT J AEROSPACE ENG</stitle><date>2021-09-26</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>6196556</artnum><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>A flexible brush mechanism is designed and mounted at the end of a seven-degree-of-freedom robotic arm to despin a tumbling target. The dynamics model of the flexible brush is established using the absolute nodal coordinate method (ANCF), and its contact collision with the solar wing of the tumbling target is analysed. The H∞ optimal control is proposed for a seven-degree-of-freedom robotic arm during despinning of a tumbling target while ensuring the global robustness and stability. Simulations verify that the despinning strategy can successfully eliminate the rotation speed and is feasible and effective.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2021/6196556</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7025-3279</orcidid><orcidid>https://orcid.org/0000-0001-8846-7817</orcidid><orcidid>https://orcid.org/0000-0002-4464-6634</orcidid><orcidid>https://orcid.org/0000-0003-4531-4903</orcidid><orcidid>https://orcid.org/0000-0001-6214-813X</orcidid><orcidid>https://orcid.org/0000-0003-1754-7056</orcidid><orcidid>https://orcid.org/0000-0003-2475-4504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5966
ispartof International Journal of Aerospace Engineering, 2021-09, Vol.2021, p.1-9, Article 6196556
issn 1687-5966
1687-5974
language eng
recordid cdi_webofscience_primary_000709716900001
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Adaptive control
Aerospace engineering
Analysis
Closed loop systems
Controllers
Degrees of freedom
Design
Energy
Engineering
Engineering, Aerospace
H-infinity control
Neural networks
Optimal control
Robot arms
Robot control
Robotics
Robots
Science & Technology
Space robots
Spin reduction
Technology
Tumbling
Velocity
title Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T23%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Control%20of%20Space%20Robot%20Despinning%20Tumbling%20Target%20Using%20Flexible%20Brushes&rft.jtitle=International%20Journal%20of%20Aerospace%20Engineering&rft.au=Sun,%20Shengxin&rft.date=2021-09-26&rft.volume=2021&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=6196556&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2021/6196556&rft_dat=%3Cgale_webof%3EA696844954%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582647868&rft_id=info:pmid/&rft_galeid=A696844954&rft_doaj_id=oai_doaj_org_article_552f6b73d52041049662ed267fdaae7a&rfr_iscdi=true