Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes
A flexible brush mechanism is designed and mounted at the end of a seven-degree-of-freedom robotic arm to despin a tumbling target. The dynamics model of the flexible brush is established using the absolute nodal coordinate method (ANCF), and its contact collision with the solar wing of the tumbling...
Gespeichert in:
Veröffentlicht in: | International Journal of Aerospace Engineering 2021-09, Vol.2021, p.1-9, Article 6196556 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | International Journal of Aerospace Engineering |
container_volume | 2021 |
creator | Sun, Shengxin Wei, Cheng Huang, Zhuoran Wu, Hao Zhang, Haibo Lu, Jianchun Du, Yan |
description | A flexible brush mechanism is designed and mounted at the end of a seven-degree-of-freedom robotic arm to despin a tumbling target. The dynamics model of the flexible brush is established using the absolute nodal coordinate method (ANCF), and its contact collision with the solar wing of the tumbling target is analysed. The H∞ optimal control is proposed for a seven-degree-of-freedom robotic arm during despinning of a tumbling target while ensuring the global robustness and stability. Simulations verify that the despinning strategy can successfully eliminate the rotation speed and is feasible and effective. |
doi_str_mv | 10.1155/2021/6196556 |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000709716900001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696844954</galeid><doaj_id>oai_doaj_org_article_552f6b73d52041049662ed267fdaae7a</doaj_id><sourcerecordid>A696844954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-6458f9c14b61dc04b79729b84d1832d3fc3d9e0c2bacffe54e2e14aaa00882573</originalsourceid><addsrcrecordid>eNqNkktvEzEUhUcIJEphxw8YiRWCtLbj1yxDoG2kSog-1pbHvk4dTexge2j59zhNlSoSQsgLH1995_jauk3zHqMTjBk7JYjgU447zhh_0RxhLsWEdYK-3GvOXzdvcl4hxBET7Kj5MbN6U_wvaOcxlBSHNrr2eqMNtFexj6X9CnnjQ_Bh2d6M6354FDotobS3eXs4G-DB9wO0X9KY7yC_bV45PWR497QfN7dn327mF5PL7-eL-exyYhiiZcIpk64zmPYcW4NoLzpBul5Si-WU2KkzU9sBMqTXxjlgFAhgqrVGSErCxPS4WexybdQrtUl-rdNvFbVXj4WYlkqn4s0AijHieC-mlhFEMaL1GwhYwoWzWoPQNevDLmuT4s8RclGrOKZQ21eEScKpkFw-U0tdQ31wsSRt1j4bNeMdl5R2jFbq5C9UXRbW3sQAztf6geHjgaEyBR7KUo85q8X11SH7eceaFHNO4PYPx0htZ0BtZ0A9zUDFP-3we-ijy8ZDMLC3IIQE6gTmXVUIV1r-Pz33RRcfwzyOoTxfdOeD1ff-3239ASsAzZo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582647868</pqid></control><display><type>article</type><title>Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Sun, Shengxin ; Wei, Cheng ; Huang, Zhuoran ; Wu, Hao ; Zhang, Haibo ; Lu, Jianchun ; Du, Yan</creator><contributor>Wu, Shunan ; Shunan Wu</contributor><creatorcontrib>Sun, Shengxin ; Wei, Cheng ; Huang, Zhuoran ; Wu, Hao ; Zhang, Haibo ; Lu, Jianchun ; Du, Yan ; Wu, Shunan ; Shunan Wu</creatorcontrib><description>A flexible brush mechanism is designed and mounted at the end of a seven-degree-of-freedom robotic arm to despin a tumbling target. The dynamics model of the flexible brush is established using the absolute nodal coordinate method (ANCF), and its contact collision with the solar wing of the tumbling target is analysed. The H∞ optimal control is proposed for a seven-degree-of-freedom robotic arm during despinning of a tumbling target while ensuring the global robustness and stability. Simulations verify that the despinning strategy can successfully eliminate the rotation speed and is feasible and effective.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2021/6196556</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Adaptive control ; Aerospace engineering ; Analysis ; Closed loop systems ; Controllers ; Degrees of freedom ; Design ; Energy ; Engineering ; Engineering, Aerospace ; H-infinity control ; Neural networks ; Optimal control ; Robot arms ; Robot control ; Robotics ; Robots ; Science & Technology ; Space robots ; Spin reduction ; Technology ; Tumbling ; Velocity</subject><ispartof>International Journal of Aerospace Engineering, 2021-09, Vol.2021, p.1-9, Article 6196556</ispartof><rights>Copyright © 2021 Shengxin Sun et al.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 Shengxin Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000709716900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c504t-6458f9c14b61dc04b79729b84d1832d3fc3d9e0c2bacffe54e2e14aaa00882573</citedby><cites>FETCH-LOGICAL-c504t-6458f9c14b61dc04b79729b84d1832d3fc3d9e0c2bacffe54e2e14aaa00882573</cites><orcidid>0000-0002-7025-3279 ; 0000-0001-8846-7817 ; 0000-0002-4464-6634 ; 0000-0003-4531-4903 ; 0000-0001-6214-813X ; 0000-0003-1754-7056 ; 0000-0003-2475-4504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,879,2106,2118,27933,27934,39267</link.rule.ids></links><search><contributor>Wu, Shunan</contributor><contributor>Shunan Wu</contributor><creatorcontrib>Sun, Shengxin</creatorcontrib><creatorcontrib>Wei, Cheng</creatorcontrib><creatorcontrib>Huang, Zhuoran</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Zhang, Haibo</creatorcontrib><creatorcontrib>Lu, Jianchun</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><title>Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes</title><title>International Journal of Aerospace Engineering</title><addtitle>INT J AEROSPACE ENG</addtitle><description>A flexible brush mechanism is designed and mounted at the end of a seven-degree-of-freedom robotic arm to despin a tumbling target. The dynamics model of the flexible brush is established using the absolute nodal coordinate method (ANCF), and its contact collision with the solar wing of the tumbling target is analysed. The H∞ optimal control is proposed for a seven-degree-of-freedom robotic arm during despinning of a tumbling target while ensuring the global robustness and stability. Simulations verify that the despinning strategy can successfully eliminate the rotation speed and is feasible and effective.</description><subject>Adaptive control</subject><subject>Aerospace engineering</subject><subject>Analysis</subject><subject>Closed loop systems</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>Design</subject><subject>Energy</subject><subject>Engineering</subject><subject>Engineering, Aerospace</subject><subject>H-infinity control</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Science & Technology</subject><subject>Space robots</subject><subject>Spin reduction</subject><subject>Technology</subject><subject>Tumbling</subject><subject>Velocity</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktvEzEUhUcIJEphxw8YiRWCtLbj1yxDoG2kSog-1pbHvk4dTexge2j59zhNlSoSQsgLH1995_jauk3zHqMTjBk7JYjgU447zhh_0RxhLsWEdYK-3GvOXzdvcl4hxBET7Kj5MbN6U_wvaOcxlBSHNrr2eqMNtFexj6X9CnnjQ_Bh2d6M6354FDotobS3eXs4G-DB9wO0X9KY7yC_bV45PWR497QfN7dn327mF5PL7-eL-exyYhiiZcIpk64zmPYcW4NoLzpBul5Si-WU2KkzU9sBMqTXxjlgFAhgqrVGSErCxPS4WexybdQrtUl-rdNvFbVXj4WYlkqn4s0AijHieC-mlhFEMaL1GwhYwoWzWoPQNevDLmuT4s8RclGrOKZQ21eEScKpkFw-U0tdQ31wsSRt1j4bNeMdl5R2jFbq5C9UXRbW3sQAztf6geHjgaEyBR7KUo85q8X11SH7eceaFHNO4PYPx0htZ0BtZ0A9zUDFP-3we-ijy8ZDMLC3IIQE6gTmXVUIV1r-Pz33RRcfwzyOoTxfdOeD1ff-3239ASsAzZo</recordid><startdate>20210926</startdate><enddate>20210926</enddate><creator>Sun, Shengxin</creator><creator>Wei, Cheng</creator><creator>Huang, Zhuoran</creator><creator>Wu, Hao</creator><creator>Zhang, Haibo</creator><creator>Lu, Jianchun</creator><creator>Du, Yan</creator><general>Hindawi</general><general>Hindawi Publishing Group</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7025-3279</orcidid><orcidid>https://orcid.org/0000-0001-8846-7817</orcidid><orcidid>https://orcid.org/0000-0002-4464-6634</orcidid><orcidid>https://orcid.org/0000-0003-4531-4903</orcidid><orcidid>https://orcid.org/0000-0001-6214-813X</orcidid><orcidid>https://orcid.org/0000-0003-1754-7056</orcidid><orcidid>https://orcid.org/0000-0003-2475-4504</orcidid></search><sort><creationdate>20210926</creationdate><title>Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes</title><author>Sun, Shengxin ; Wei, Cheng ; Huang, Zhuoran ; Wu, Hao ; Zhang, Haibo ; Lu, Jianchun ; Du, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-6458f9c14b61dc04b79729b84d1832d3fc3d9e0c2bacffe54e2e14aaa00882573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Aerospace engineering</topic><topic>Analysis</topic><topic>Closed loop systems</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>Design</topic><topic>Energy</topic><topic>Engineering</topic><topic>Engineering, Aerospace</topic><topic>H-infinity control</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Science & Technology</topic><topic>Space robots</topic><topic>Spin reduction</topic><topic>Technology</topic><topic>Tumbling</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shengxin</creatorcontrib><creatorcontrib>Wei, Cheng</creatorcontrib><creatorcontrib>Huang, Zhuoran</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Zhang, Haibo</creatorcontrib><creatorcontrib>Lu, Jianchun</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International Journal of Aerospace Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shengxin</au><au>Wei, Cheng</au><au>Huang, Zhuoran</au><au>Wu, Hao</au><au>Zhang, Haibo</au><au>Lu, Jianchun</au><au>Du, Yan</au><au>Wu, Shunan</au><au>Shunan Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes</atitle><jtitle>International Journal of Aerospace Engineering</jtitle><stitle>INT J AEROSPACE ENG</stitle><date>2021-09-26</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>6196556</artnum><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>A flexible brush mechanism is designed and mounted at the end of a seven-degree-of-freedom robotic arm to despin a tumbling target. The dynamics model of the flexible brush is established using the absolute nodal coordinate method (ANCF), and its contact collision with the solar wing of the tumbling target is analysed. The H∞ optimal control is proposed for a seven-degree-of-freedom robotic arm during despinning of a tumbling target while ensuring the global robustness and stability. Simulations verify that the despinning strategy can successfully eliminate the rotation speed and is feasible and effective.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2021/6196556</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7025-3279</orcidid><orcidid>https://orcid.org/0000-0001-8846-7817</orcidid><orcidid>https://orcid.org/0000-0002-4464-6634</orcidid><orcidid>https://orcid.org/0000-0003-4531-4903</orcidid><orcidid>https://orcid.org/0000-0001-6214-813X</orcidid><orcidid>https://orcid.org/0000-0003-1754-7056</orcidid><orcidid>https://orcid.org/0000-0003-2475-4504</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5966 |
ispartof | International Journal of Aerospace Engineering, 2021-09, Vol.2021, p.1-9, Article 6196556 |
issn | 1687-5966 1687-5974 |
language | eng |
recordid | cdi_webofscience_primary_000709716900001 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Adaptive control Aerospace engineering Analysis Closed loop systems Controllers Degrees of freedom Design Energy Engineering Engineering, Aerospace H-infinity control Neural networks Optimal control Robot arms Robot control Robotics Robots Science & Technology Space robots Spin reduction Technology Tumbling Velocity |
title | Adaptive Control of Space Robot Despinning Tumbling Target Using Flexible Brushes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T23%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Control%20of%20Space%20Robot%20Despinning%20Tumbling%20Target%20Using%20Flexible%20Brushes&rft.jtitle=International%20Journal%20of%20Aerospace%20Engineering&rft.au=Sun,%20Shengxin&rft.date=2021-09-26&rft.volume=2021&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=6196556&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2021/6196556&rft_dat=%3Cgale_webof%3EA696844954%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582647868&rft_id=info:pmid/&rft_galeid=A696844954&rft_doaj_id=oai_doaj_org_article_552f6b73d52041049662ed267fdaae7a&rfr_iscdi=true |