Constrained plasticity reserve as a natural way to control frequency and weights in spiking neural networks

Biological neurons have adaptive nature and perform complex computations involving the filtering of redundant information. However, most common neural cell models, including biologically plausible, such as Hodgkin–Huxley or Izhikevich, do not possess predictive dynamics on a single-cell level. Moreo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2021-11, Vol.143, p.783-797
Hauptverfasser: Nikitin, Oleg, Lukyanova, Olga, Kunin, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 797
container_issue
container_start_page 783
container_title Neural networks
container_volume 143
creator Nikitin, Oleg
Lukyanova, Olga
Kunin, Alex
description Biological neurons have adaptive nature and perform complex computations involving the filtering of redundant information. However, most common neural cell models, including biologically plausible, such as Hodgkin–Huxley or Izhikevich, do not possess predictive dynamics on a single-cell level. Moreover, the modern rules of synaptic plasticity or interconnections weights adaptation also do not provide grounding for the ability of neurons to adapt to the ever-changing input signal intensity. While natural neuron synaptic growth is precisely controlled and restricted by protein supply and recycling, weight correction rules such as widely used STDP are efficiently unlimited in change rate and scale. The present article introduces new mechanics of interconnection between neuron firing rate homeostasis and weight change through STDP growth bounded by abstract protein reserve, controlled by the intracellular optimization algorithm. We show how these cellular dynamics help neurons filter out the intense noise signals to help neurons keep a stable firing rate. We also examine that such filtering does not affect the ability of neurons to recognize the correlated inputs in unsupervised mode. Such an approach might be used in the machine learning domain to improve the robustness of AI systems. •Biological neurons do control the weight growth guided by firing rate homeostasis.•Nonlinear plasticity control keeps the firing rate constant with a varying input.•The model leads to correlation sensitivity amplification and filtering of noise.
doi_str_mv 10.1016/j.neunet.2021.08.016
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000709457600012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360802100321X</els_id><sourcerecordid>2570109331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-e7652f3a22e77088124a25b901b05aadf5c101bedbb447514ef4da2319cd04e73</originalsourceid><addsrcrecordid>eNqNkEGL1DAUx4Mo7uzqN_CQoyCtL2napBdByuoKC170HNL0dc1MNxmTdIf59mbo4lE8vcfj_3v8-RHyjkHNgHUf97XH1WOuOXBWg6rL8QXZMSX7ikvFX5IdqL6pOlBwRa5T2gNAp0Tzmlw1QigFTOzIYQg-5Wicx4keF5Oysy6facSE8QmpSdRQb_IazUJP5kxzoDb4HMNC54i_V_T2TI2f6Andw6-cqPM0Hd3B-QdaCl6wUvIU4iG9Ia9msyR8-zxvyM8vtz-Gu-r--9dvw-f7yoqW5Qpl1_K5MZyjlKAU48LwduyBjdAaM82tLQJGnMZRCNkygbOYDG9YbycQKJsb8n77e4yhFExZP7pkcVmMx7AmzVsJDPqmYSUqtqiNIaWIsz5G92jiWTPQF816rzfN-qJZg9LlWLAPG3bCMczJumIB_6LFs4RetLIrG-Mlrf4_Pbhssgt-CKvPBf20oVh8PTmM-hmfXESb9RTcv5v-Acl6qQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570109331</pqid></control><display><type>article</type><title>Constrained plasticity reserve as a natural way to control frequency and weights in spiking neural networks</title><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Nikitin, Oleg ; Lukyanova, Olga ; Kunin, Alex</creator><creatorcontrib>Nikitin, Oleg ; Lukyanova, Olga ; Kunin, Alex</creatorcontrib><description>Biological neurons have adaptive nature and perform complex computations involving the filtering of redundant information. However, most common neural cell models, including biologically plausible, such as Hodgkin–Huxley or Izhikevich, do not possess predictive dynamics on a single-cell level. Moreover, the modern rules of synaptic plasticity or interconnections weights adaptation also do not provide grounding for the ability of neurons to adapt to the ever-changing input signal intensity. While natural neuron synaptic growth is precisely controlled and restricted by protein supply and recycling, weight correction rules such as widely used STDP are efficiently unlimited in change rate and scale. The present article introduces new mechanics of interconnection between neuron firing rate homeostasis and weight change through STDP growth bounded by abstract protein reserve, controlled by the intracellular optimization algorithm. We show how these cellular dynamics help neurons filter out the intense noise signals to help neurons keep a stable firing rate. We also examine that such filtering does not affect the ability of neurons to recognize the correlated inputs in unsupervised mode. Such an approach might be used in the machine learning domain to improve the robustness of AI systems. •Biological neurons do control the weight growth guided by firing rate homeostasis.•Nonlinear plasticity control keeps the firing rate constant with a varying input.•The model leads to correlation sensitivity amplification and filtering of noise.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2021.08.016</identifier><identifier>PMID: 34488014</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Adaptive control ; Bio-inspired cognitive architectures ; Computer Science ; Computer Science, Artificial Intelligence ; Life Sciences &amp; Biomedicine ; Neural homeostasis ; Neurosciences ; Neurosciences &amp; Neurology ; Science &amp; Technology ; Spike-timing-dependent plasticity ; Synaptic scaling ; Technology</subject><ispartof>Neural networks, 2021-11, Vol.143, p.783-797</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000709457600012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c451t-e7652f3a22e77088124a25b901b05aadf5c101bedbb447514ef4da2319cd04e73</citedby><cites>FETCH-LOGICAL-c451t-e7652f3a22e77088124a25b901b05aadf5c101bedbb447514ef4da2319cd04e73</cites><orcidid>0000-0001-6864-9875 ; 0000-0001-9139-5180 ; 0000-0002-5221-0590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2021.08.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Nikitin, Oleg</creatorcontrib><creatorcontrib>Lukyanova, Olga</creatorcontrib><creatorcontrib>Kunin, Alex</creatorcontrib><title>Constrained plasticity reserve as a natural way to control frequency and weights in spiking neural networks</title><title>Neural networks</title><addtitle>NEURAL NETWORKS</addtitle><description>Biological neurons have adaptive nature and perform complex computations involving the filtering of redundant information. However, most common neural cell models, including biologically plausible, such as Hodgkin–Huxley or Izhikevich, do not possess predictive dynamics on a single-cell level. Moreover, the modern rules of synaptic plasticity or interconnections weights adaptation also do not provide grounding for the ability of neurons to adapt to the ever-changing input signal intensity. While natural neuron synaptic growth is precisely controlled and restricted by protein supply and recycling, weight correction rules such as widely used STDP are efficiently unlimited in change rate and scale. The present article introduces new mechanics of interconnection between neuron firing rate homeostasis and weight change through STDP growth bounded by abstract protein reserve, controlled by the intracellular optimization algorithm. We show how these cellular dynamics help neurons filter out the intense noise signals to help neurons keep a stable firing rate. We also examine that such filtering does not affect the ability of neurons to recognize the correlated inputs in unsupervised mode. Such an approach might be used in the machine learning domain to improve the robustness of AI systems. •Biological neurons do control the weight growth guided by firing rate homeostasis.•Nonlinear plasticity control keeps the firing rate constant with a varying input.•The model leads to correlation sensitivity amplification and filtering of noise.</description><subject>Adaptive control</subject><subject>Bio-inspired cognitive architectures</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Neural homeostasis</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Science &amp; Technology</subject><subject>Spike-timing-dependent plasticity</subject><subject>Synaptic scaling</subject><subject>Technology</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEGL1DAUx4Mo7uzqN_CQoyCtL2napBdByuoKC170HNL0dc1MNxmTdIf59mbo4lE8vcfj_3v8-RHyjkHNgHUf97XH1WOuOXBWg6rL8QXZMSX7ikvFX5IdqL6pOlBwRa5T2gNAp0Tzmlw1QigFTOzIYQg-5Wicx4keF5Oysy6facSE8QmpSdRQb_IazUJP5kxzoDb4HMNC54i_V_T2TI2f6Andw6-cqPM0Hd3B-QdaCl6wUvIU4iG9Ia9msyR8-zxvyM8vtz-Gu-r--9dvw-f7yoqW5Qpl1_K5MZyjlKAU48LwduyBjdAaM82tLQJGnMZRCNkygbOYDG9YbycQKJsb8n77e4yhFExZP7pkcVmMx7AmzVsJDPqmYSUqtqiNIaWIsz5G92jiWTPQF816rzfN-qJZg9LlWLAPG3bCMczJumIB_6LFs4RetLIrG-Mlrf4_Pbhssgt-CKvPBf20oVh8PTmM-hmfXESb9RTcv5v-Acl6qQA</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Nikitin, Oleg</creator><creator>Lukyanova, Olga</creator><creator>Kunin, Alex</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6864-9875</orcidid><orcidid>https://orcid.org/0000-0001-9139-5180</orcidid><orcidid>https://orcid.org/0000-0002-5221-0590</orcidid></search><sort><creationdate>202111</creationdate><title>Constrained plasticity reserve as a natural way to control frequency and weights in spiking neural networks</title><author>Nikitin, Oleg ; Lukyanova, Olga ; Kunin, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-e7652f3a22e77088124a25b901b05aadf5c101bedbb447514ef4da2319cd04e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Bio-inspired cognitive architectures</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Neural homeostasis</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Science &amp; Technology</topic><topic>Spike-timing-dependent plasticity</topic><topic>Synaptic scaling</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikitin, Oleg</creatorcontrib><creatorcontrib>Lukyanova, Olga</creatorcontrib><creatorcontrib>Kunin, Alex</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikitin, Oleg</au><au>Lukyanova, Olga</au><au>Kunin, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained plasticity reserve as a natural way to control frequency and weights in spiking neural networks</atitle><jtitle>Neural networks</jtitle><stitle>NEURAL NETWORKS</stitle><date>2021-11</date><risdate>2021</risdate><volume>143</volume><spage>783</spage><epage>797</epage><pages>783-797</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Biological neurons have adaptive nature and perform complex computations involving the filtering of redundant information. However, most common neural cell models, including biologically plausible, such as Hodgkin–Huxley or Izhikevich, do not possess predictive dynamics on a single-cell level. Moreover, the modern rules of synaptic plasticity or interconnections weights adaptation also do not provide grounding for the ability of neurons to adapt to the ever-changing input signal intensity. While natural neuron synaptic growth is precisely controlled and restricted by protein supply and recycling, weight correction rules such as widely used STDP are efficiently unlimited in change rate and scale. The present article introduces new mechanics of interconnection between neuron firing rate homeostasis and weight change through STDP growth bounded by abstract protein reserve, controlled by the intracellular optimization algorithm. We show how these cellular dynamics help neurons filter out the intense noise signals to help neurons keep a stable firing rate. We also examine that such filtering does not affect the ability of neurons to recognize the correlated inputs in unsupervised mode. Such an approach might be used in the machine learning domain to improve the robustness of AI systems. •Biological neurons do control the weight growth guided by firing rate homeostasis.•Nonlinear plasticity control keeps the firing rate constant with a varying input.•The model leads to correlation sensitivity amplification and filtering of noise.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>34488014</pmid><doi>10.1016/j.neunet.2021.08.016</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6864-9875</orcidid><orcidid>https://orcid.org/0000-0001-9139-5180</orcidid><orcidid>https://orcid.org/0000-0002-5221-0590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2021-11, Vol.143, p.783-797
issn 0893-6080
1879-2782
language eng
recordid cdi_webofscience_primary_000709457600012
source Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Adaptive control
Bio-inspired cognitive architectures
Computer Science
Computer Science, Artificial Intelligence
Life Sciences & Biomedicine
Neural homeostasis
Neurosciences
Neurosciences & Neurology
Science & Technology
Spike-timing-dependent plasticity
Synaptic scaling
Technology
title Constrained plasticity reserve as a natural way to control frequency and weights in spiking neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20plasticity%20reserve%20as%20a%20natural%20way%20to%20control%20frequency%20and%20weights%20in%20spiking%20neural%20networks&rft.jtitle=Neural%20networks&rft.au=Nikitin,%20Oleg&rft.date=2021-11&rft.volume=143&rft.spage=783&rft.epage=797&rft.pages=783-797&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2021.08.016&rft_dat=%3Cproquest_webof%3E2570109331%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570109331&rft_id=info:pmid/34488014&rft_els_id=S089360802100321X&rfr_iscdi=true