Polyethylene-coffee husk eco-composites for production of value-added consumer products

The annual worldwide production of coffee exceeds 10 million tons, and more than 90% of this production is waste, including the husk. On the other hand, plastic consumption increases every year, and sustainable alternatives are necessary to decrease it. This work arises to solve these two problems,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable environment research 2021-10, Vol.31 (1), p.1-14, Article 34
Hauptverfasser: Jaramillo, Leyla Y., Vásquez-Rendón, Mauricio, Upegui, Sergio, Posada, Juan C., Romero-Sáez, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The annual worldwide production of coffee exceeds 10 million tons, and more than 90% of this production is waste, including the husk. On the other hand, plastic consumption increases every year, and sustainable alternatives are necessary to decrease it. This work arises to solve these two problems, and seeks to produce products at an industrial level from polyethylene/coffee husk eco-composites. Both Low Density Polyethylene and High Density Polyethylene were used, and the amounts of coffee husk added as filler were 20 and 40 wt%. The composites were characterized by different morphological, thermal and mechanical techniques. Scanning Electron Microscopy images showed husk particles embedded in the polymer matrix, but with some gaps between the polymer and the filler, because no compatibilizer agent was used. The addition of large amounts of natural filler negatively affected the tensile strength and elongation at break, but increases eco-composites crystallinity, and hence, their Young modulus and hardness. The industrial applicability of the eco-composites was verified through the production of five different consumer products by extrusion and injection processes, using mixtures with 40 wt% coffee husks. All products were obtained without significant defects. If only 3.25 wt% of the polyethylene products produced each year in Colombia did so with the eco-composites developed in this work, all the coffee husk produced in the country would be used, and the emission of about 5.390 million m 3 of greenhouse gases would be avoided.
ISSN:2468-2039
2468-2039
DOI:10.1186/s42834-021-00107-6