Effect of Freeze-Thaw Cycles on the Mechanical Properties of Polyacrylamide- and Lignocellulose-Stabilized Clay in Tibet

Laboratory freezing experiments were conducted to evaluate the effect of polyacrylamide (PAM) and lignocellulose on the mechanical properties and microstructural characteristics of Tibetan clay. Direct shear and unconfined compressive tests and field emission scanning electron microscopy analyses we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in materials science and engineering 2021, Vol.2021 (1), Article 7723405
Hauptverfasser: Shi, Haiping, Li, Zhongyao, Li, Wenwei, Wang, Shaopeng, Wang, Baotian, Wang, Peiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Advances in materials science and engineering
container_volume 2021
creator Shi, Haiping
Li, Zhongyao
Li, Wenwei
Wang, Shaopeng
Wang, Baotian
Wang, Peiqing
description Laboratory freezing experiments were conducted to evaluate the effect of polyacrylamide (PAM) and lignocellulose on the mechanical properties and microstructural characteristics of Tibetan clay. Direct shear and unconfined compressive tests and field emission scanning electron microscopy analyses were performed on clay samples with different contents of stabilizers. The test results show that the addition of PAM can improve the unconfined compressive strength and cohesion of Tibetan clay, but an excessive amount of PAM reduces the internal friction angle. After several freeze-thaw cycles, the unconfined compressive strength and cohesion of samples stabilized by PAM decrease significantly, while the internal friction angle increases. Samples stabilized by PAM and lignocellulose have higher internal friction angles, cohesion, and unconfined compressive strength and can retain about 80% of the original strength after 10 freeze-thaw cycles. PAM fills the pores between soil particles and provides adhesion. The addition of lignocellulose can form a network, restrict the expansion of pores caused by freeze-thaw cycles, and improve the integrity of PAM colloids. It is postulated that the addition of a composite stabilizer with a PAM content of 0.4% and a lignocellulose content of 2% may be a technically feasible method to increase the strength of Tibetan clay.
doi_str_mv 10.1155/2021/7723405
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000708393500001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ca41fff770af486c8243710c1b7073dc</doaj_id><sourcerecordid>2580586697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-19db447a7541248d51b1d596a9cabcc7953a714bbaa1e11a39b4bc46aac858f13</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhSMEElXpjR9giSOE2rEdO0cUtVBpEZVYztbYGXe9cuPF8WpJfz1ZtlpuCF_G8nzveUavqt4y-pExKa8b2rBrpRouqHxRXbBWq1oL0bw837l4XV1N05Yuh3ey7cRF9evGe3SFJE9uM-IT1usNHEg_u4gTSSMpGyRf0W1gDA4iuc9ph7mEY9OT-xRncHmO8BgGrAmMA1mFhzE5jHEf04T19wI2xPCEA-kjzCSMZB0sljfVKw9xwqvneln9uL1Z91_q1bfPd_2nVe0E5aVm3WCFUKCkYI3Qg2SWDbJroXNgnVOd5KCYsBaAIWPAOyusEy2A01J7xi-ru5PvkGBrdjk8Qp5NgmD-PKT8YGDZZ1nXOBDMe68UBS9063QjuGLUMauo4oNbvN6dvHY5_dzjVMw27fO4jG8aqanUbduphfpwolxO05TRn39l1ByjMseozHNUC65P-AFt8pMLODo8S5aoFNW84_KYGutDgRLS2Kf9WBbp-_-X_qU3YRzgEP491m8iK7NT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580586697</pqid></control><display><type>article</type><title>Effect of Freeze-Thaw Cycles on the Mechanical Properties of Polyacrylamide- and Lignocellulose-Stabilized Clay in Tibet</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Shi, Haiping ; Li, Zhongyao ; Li, Wenwei ; Wang, Shaopeng ; Wang, Baotian ; Wang, Peiqing</creator><contributor>Xu, Xiangtian ; Xiangtian Xu</contributor><creatorcontrib>Shi, Haiping ; Li, Zhongyao ; Li, Wenwei ; Wang, Shaopeng ; Wang, Baotian ; Wang, Peiqing ; Xu, Xiangtian ; Xiangtian Xu</creatorcontrib><description>Laboratory freezing experiments were conducted to evaluate the effect of polyacrylamide (PAM) and lignocellulose on the mechanical properties and microstructural characteristics of Tibetan clay. Direct shear and unconfined compressive tests and field emission scanning electron microscopy analyses were performed on clay samples with different contents of stabilizers. The test results show that the addition of PAM can improve the unconfined compressive strength and cohesion of Tibetan clay, but an excessive amount of PAM reduces the internal friction angle. After several freeze-thaw cycles, the unconfined compressive strength and cohesion of samples stabilized by PAM decrease significantly, while the internal friction angle increases. Samples stabilized by PAM and lignocellulose have higher internal friction angles, cohesion, and unconfined compressive strength and can retain about 80% of the original strength after 10 freeze-thaw cycles. PAM fills the pores between soil particles and provides adhesion. The addition of lignocellulose can form a network, restrict the expansion of pores caused by freeze-thaw cycles, and improve the integrity of PAM colloids. It is postulated that the addition of a composite stabilizer with a PAM content of 0.4% and a lignocellulose content of 2% may be a technically feasible method to increase the strength of Tibetan clay.</description><identifier>ISSN: 1687-8434</identifier><identifier>EISSN: 1687-8442</identifier><identifier>DOI: 10.1155/2021/7723405</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Additives ; Clay ; Cohesion ; Compressive strength ; Density ; Emission analysis ; Field emission microscopy ; Freeze thaw cycles ; Friction ; Friction reduction ; Gravity ; Internal friction ; Lignin ; Lignocellulose ; Materials Science ; Materials Science, Multidisciplinary ; Mechanical properties ; Polyacrylamide ; Polymers ; Science &amp; Technology ; Sea level ; Shear strength ; Shear tests ; Soil erosion ; Technology</subject><ispartof>Advances in materials science and engineering, 2021, Vol.2021 (1), Article 7723405</ispartof><rights>Copyright © 2021 Haiping Shi et al.</rights><rights>Copyright © 2021 Haiping Shi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000708393500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c403t-19db447a7541248d51b1d596a9cabcc7953a714bbaa1e11a39b4bc46aac858f13</citedby><cites>FETCH-LOGICAL-c403t-19db447a7541248d51b1d596a9cabcc7953a714bbaa1e11a39b4bc46aac858f13</cites><orcidid>0000-0002-4649-1875 ; 0000-0002-2514-0371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,878,2103,2115,4025,27928,27929,27930,39263</link.rule.ids></links><search><contributor>Xu, Xiangtian</contributor><contributor>Xiangtian Xu</contributor><creatorcontrib>Shi, Haiping</creatorcontrib><creatorcontrib>Li, Zhongyao</creatorcontrib><creatorcontrib>Li, Wenwei</creatorcontrib><creatorcontrib>Wang, Shaopeng</creatorcontrib><creatorcontrib>Wang, Baotian</creatorcontrib><creatorcontrib>Wang, Peiqing</creatorcontrib><title>Effect of Freeze-Thaw Cycles on the Mechanical Properties of Polyacrylamide- and Lignocellulose-Stabilized Clay in Tibet</title><title>Advances in materials science and engineering</title><addtitle>ADV MATER SCI ENG</addtitle><description>Laboratory freezing experiments were conducted to evaluate the effect of polyacrylamide (PAM) and lignocellulose on the mechanical properties and microstructural characteristics of Tibetan clay. Direct shear and unconfined compressive tests and field emission scanning electron microscopy analyses were performed on clay samples with different contents of stabilizers. The test results show that the addition of PAM can improve the unconfined compressive strength and cohesion of Tibetan clay, but an excessive amount of PAM reduces the internal friction angle. After several freeze-thaw cycles, the unconfined compressive strength and cohesion of samples stabilized by PAM decrease significantly, while the internal friction angle increases. Samples stabilized by PAM and lignocellulose have higher internal friction angles, cohesion, and unconfined compressive strength and can retain about 80% of the original strength after 10 freeze-thaw cycles. PAM fills the pores between soil particles and provides adhesion. The addition of lignocellulose can form a network, restrict the expansion of pores caused by freeze-thaw cycles, and improve the integrity of PAM colloids. It is postulated that the addition of a composite stabilizer with a PAM content of 0.4% and a lignocellulose content of 2% may be a technically feasible method to increase the strength of Tibetan clay.</description><subject>Additives</subject><subject>Clay</subject><subject>Cohesion</subject><subject>Compressive strength</subject><subject>Density</subject><subject>Emission analysis</subject><subject>Field emission microscopy</subject><subject>Freeze thaw cycles</subject><subject>Friction</subject><subject>Friction reduction</subject><subject>Gravity</subject><subject>Internal friction</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mechanical properties</subject><subject>Polyacrylamide</subject><subject>Polymers</subject><subject>Science &amp; Technology</subject><subject>Sea level</subject><subject>Shear strength</subject><subject>Shear tests</subject><subject>Soil erosion</subject><subject>Technology</subject><issn>1687-8434</issn><issn>1687-8442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUFv1DAQhSMEElXpjR9giSOE2rEdO0cUtVBpEZVYztbYGXe9cuPF8WpJfz1ZtlpuCF_G8nzveUavqt4y-pExKa8b2rBrpRouqHxRXbBWq1oL0bw837l4XV1N05Yuh3ey7cRF9evGe3SFJE9uM-IT1usNHEg_u4gTSSMpGyRf0W1gDA4iuc9ph7mEY9OT-xRncHmO8BgGrAmMA1mFhzE5jHEf04T19wI2xPCEA-kjzCSMZB0sljfVKw9xwqvneln9uL1Z91_q1bfPd_2nVe0E5aVm3WCFUKCkYI3Qg2SWDbJroXNgnVOd5KCYsBaAIWPAOyusEy2A01J7xi-ru5PvkGBrdjk8Qp5NgmD-PKT8YGDZZ1nXOBDMe68UBS9063QjuGLUMauo4oNbvN6dvHY5_dzjVMw27fO4jG8aqanUbduphfpwolxO05TRn39l1ByjMseozHNUC65P-AFt8pMLODo8S5aoFNW84_KYGutDgRLS2Kf9WBbp-_-X_qU3YRzgEP491m8iK7NT</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Shi, Haiping</creator><creator>Li, Zhongyao</creator><creator>Li, Wenwei</creator><creator>Wang, Shaopeng</creator><creator>Wang, Baotian</creator><creator>Wang, Peiqing</creator><general>Hindawi</general><general>Hindawi Publishing Group</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4649-1875</orcidid><orcidid>https://orcid.org/0000-0002-2514-0371</orcidid></search><sort><creationdate>2021</creationdate><title>Effect of Freeze-Thaw Cycles on the Mechanical Properties of Polyacrylamide- and Lignocellulose-Stabilized Clay in Tibet</title><author>Shi, Haiping ; Li, Zhongyao ; Li, Wenwei ; Wang, Shaopeng ; Wang, Baotian ; Wang, Peiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-19db447a7541248d51b1d596a9cabcc7953a714bbaa1e11a39b4bc46aac858f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Clay</topic><topic>Cohesion</topic><topic>Compressive strength</topic><topic>Density</topic><topic>Emission analysis</topic><topic>Field emission microscopy</topic><topic>Freeze thaw cycles</topic><topic>Friction</topic><topic>Friction reduction</topic><topic>Gravity</topic><topic>Internal friction</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mechanical properties</topic><topic>Polyacrylamide</topic><topic>Polymers</topic><topic>Science &amp; Technology</topic><topic>Sea level</topic><topic>Shear strength</topic><topic>Shear tests</topic><topic>Soil erosion</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Haiping</creatorcontrib><creatorcontrib>Li, Zhongyao</creatorcontrib><creatorcontrib>Li, Wenwei</creatorcontrib><creatorcontrib>Wang, Shaopeng</creatorcontrib><creatorcontrib>Wang, Baotian</creatorcontrib><creatorcontrib>Wang, Peiqing</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Haiping</au><au>Li, Zhongyao</au><au>Li, Wenwei</au><au>Wang, Shaopeng</au><au>Wang, Baotian</au><au>Wang, Peiqing</au><au>Xu, Xiangtian</au><au>Xiangtian Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Freeze-Thaw Cycles on the Mechanical Properties of Polyacrylamide- and Lignocellulose-Stabilized Clay in Tibet</atitle><jtitle>Advances in materials science and engineering</jtitle><stitle>ADV MATER SCI ENG</stitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><artnum>7723405</artnum><issn>1687-8434</issn><eissn>1687-8442</eissn><abstract>Laboratory freezing experiments were conducted to evaluate the effect of polyacrylamide (PAM) and lignocellulose on the mechanical properties and microstructural characteristics of Tibetan clay. Direct shear and unconfined compressive tests and field emission scanning electron microscopy analyses were performed on clay samples with different contents of stabilizers. The test results show that the addition of PAM can improve the unconfined compressive strength and cohesion of Tibetan clay, but an excessive amount of PAM reduces the internal friction angle. After several freeze-thaw cycles, the unconfined compressive strength and cohesion of samples stabilized by PAM decrease significantly, while the internal friction angle increases. Samples stabilized by PAM and lignocellulose have higher internal friction angles, cohesion, and unconfined compressive strength and can retain about 80% of the original strength after 10 freeze-thaw cycles. PAM fills the pores between soil particles and provides adhesion. The addition of lignocellulose can form a network, restrict the expansion of pores caused by freeze-thaw cycles, and improve the integrity of PAM colloids. It is postulated that the addition of a composite stabilizer with a PAM content of 0.4% and a lignocellulose content of 2% may be a technically feasible method to increase the strength of Tibetan clay.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2021/7723405</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4649-1875</orcidid><orcidid>https://orcid.org/0000-0002-2514-0371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8434
ispartof Advances in materials science and engineering, 2021, Vol.2021 (1), Article 7723405
issn 1687-8434
1687-8442
language eng
recordid cdi_webofscience_primary_000708393500001CitationCount
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Additives
Clay
Cohesion
Compressive strength
Density
Emission analysis
Field emission microscopy
Freeze thaw cycles
Friction
Friction reduction
Gravity
Internal friction
Lignin
Lignocellulose
Materials Science
Materials Science, Multidisciplinary
Mechanical properties
Polyacrylamide
Polymers
Science & Technology
Sea level
Shear strength
Shear tests
Soil erosion
Technology
title Effect of Freeze-Thaw Cycles on the Mechanical Properties of Polyacrylamide- and Lignocellulose-Stabilized Clay in Tibet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Freeze-Thaw%20Cycles%20on%20the%20Mechanical%20Properties%20of%20Polyacrylamide-%20and%20Lignocellulose-Stabilized%20Clay%20in%20Tibet&rft.jtitle=Advances%20in%20materials%20science%20and%20engineering&rft.au=Shi,%20Haiping&rft.date=2021&rft.volume=2021&rft.issue=1&rft.artnum=7723405&rft.issn=1687-8434&rft.eissn=1687-8442&rft_id=info:doi/10.1155/2021/7723405&rft_dat=%3Cproquest_webof%3E2580586697%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580586697&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ca41fff770af486c8243710c1b7073dc&rfr_iscdi=true