Spectrality of generalized Sierpinski-type self-affine measures
In this work, we study the spectral property of generalized Sierpinski-type self-affine measures μM,D on R2 generated by an expanding integer matrix M∈M2(Z) with det(M)∈3Z and a non-collinear integer digit set D={(0,0)t,(α1,α2)t,(β1,β2)t} with α1β2−α2β1∈3Z. We give the sufficient and necessary cond...
Gespeichert in:
Veröffentlicht in: | Applied and computational harmonic analysis 2021-11, Vol.55, p.129-148 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we study the spectral property of generalized Sierpinski-type self-affine measures μM,D on R2 generated by an expanding integer matrix M∈M2(Z) with det(M)∈3Z and a non-collinear integer digit set D={(0,0)t,(α1,α2)t,(β1,β2)t} with α1β2−α2β1∈3Z. We give the sufficient and necessary conditions for μM,D to be a spectral measure, i.e., there exists a countable subset Λ⊂R2 such that E(Λ)={e2πi〈λ,x〉:λ∈Λ} forms an orthonormal basis for L2(μM,D). This completely settles the spectrality of the self-affine measure μM,D. |
---|---|
ISSN: | 1063-5203 1096-603X |
DOI: | 10.1016/j.acha.2021.05.001 |