Spectrality of generalized Sierpinski-type self-affine measures

In this work, we study the spectral property of generalized Sierpinski-type self-affine measures μM,D on R2 generated by an expanding integer matrix M∈M2(Z) with det⁡(M)∈3Z and a non-collinear integer digit set D={(0,0)t,(α1,α2)t,(β1,β2)t} with α1β2−α2β1∈3Z. We give the sufficient and necessary cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and computational harmonic analysis 2021-11, Vol.55, p.129-148
Hauptverfasser: Liu, Jing-Cheng, Zhang, Ying, Wang, Zhi-Yong, Chen, Ming-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study the spectral property of generalized Sierpinski-type self-affine measures μM,D on R2 generated by an expanding integer matrix M∈M2(Z) with det⁡(M)∈3Z and a non-collinear integer digit set D={(0,0)t,(α1,α2)t,(β1,β2)t} with α1β2−α2β1∈3Z. We give the sufficient and necessary conditions for μM,D to be a spectral measure, i.e., there exists a countable subset Λ⊂R2 such that E(Λ)={e2πi〈λ,x〉:λ∈Λ} forms an orthonormal basis for L2(μM,D). This completely settles the spectrality of the self-affine measure μM,D.
ISSN:1063-5203
1096-603X
DOI:10.1016/j.acha.2021.05.001