The missing enzymatic link in syntrophic methane formation from fatty acids

The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-10, Vol.118 (40), Article 2111682118
Hauptverfasser: Agne, Michael, Estelmann, Sebastian, Seelmann, Carola S., Kung, Johannes, Wilkens, Dennis, Koch, Hans-Georg, van der Does, Chris, Albers, Sonja, von Ballmoos, Christoph, Simon, Joerg, Boll, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 40
container_start_page
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Agne, Michael
Estelmann, Sebastian
Seelmann, Carola S.
Kung, Johannes
Wilkens, Dennis
Koch, Hans-Georg
van der Does, Chris
Albers, Sonja
von Ballmoos, Christoph
Simon, Joerg
Boll, Matthias
description The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to the methanogenic substrates acetate, H2, CO2, or formate. While the concept of syntrophic methane formation was developed half a century ago, the highly endergonic reduction of CO2 to methane by electrons derived from 8-oxidation of saturated fatty acids has remained hypothetical. Here, we studied a previously noncharacterized membrane-bound oxidoreductase (EMO) from Syntrophus aciditrophicus containing two heme b cofactors and 8-methylmenaquinone as key redox components of the redox loop-driven reduction of CO2 by acyl-coenzyme A (CoA). Using solubilized EMO and proteoliposomes, we reconstituted the entire electron transfer chain from acyl-CoA to CO2 and identified the transfer from a high- to a low-potential heme b with perfectly adjusted midpoint potentials as key steps in syntrophic fatty acid oxidation. The results close our gap of knowledge in the conversion of biomass into methane and identify EMOs as key players of 8-oxidation in (methyl)menaquinone-containing organisms.
doi_str_mv 10.1073/pnas.2111682118|1of6
format Article
fullrecord <record><control><sourceid>webofscience</sourceid><recordid>TN_cdi_webofscience_primary_000705925500005CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000705925500005</sourcerecordid><originalsourceid>FETCH-webofscience_primary_0007059255000053</originalsourceid><addsrcrecordid>eNqVjsFOwzAQRPcAoqXwBxz2jlrWcZw45wiExLX3ygSbGOp1ZBuhID6egPgAuMyMRk-aAbgStBPUypuJTd5VQohGL6o_RXTNCayJqnar66pewXnOL0TUKU1nsJK10rLrmjU87EeLwefs-Rktf8zBFD_g0fMresY8c0lxGpcq2DIatuhi-mYio0sxoDOlzGgG_5Qv4NSZY7aXv76B67vbfX-_fbeP0eXBWx7sYUo-mDQfljctqa5Sakmk5Ab03-nel58PfXzjIv839AV2glz9</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The missing enzymatic link in syntrophic methane formation from fatty acids</title><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Agne, Michael ; Estelmann, Sebastian ; Seelmann, Carola S. ; Kung, Johannes ; Wilkens, Dennis ; Koch, Hans-Georg ; van der Does, Chris ; Albers, Sonja ; von Ballmoos, Christoph ; Simon, Joerg ; Boll, Matthias</creator><creatorcontrib>Agne, Michael ; Estelmann, Sebastian ; Seelmann, Carola S. ; Kung, Johannes ; Wilkens, Dennis ; Koch, Hans-Georg ; van der Does, Chris ; Albers, Sonja ; von Ballmoos, Christoph ; Simon, Joerg ; Boll, Matthias</creatorcontrib><description>The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to the methanogenic substrates acetate, H2, CO2, or formate. While the concept of syntrophic methane formation was developed half a century ago, the highly endergonic reduction of CO2 to methane by electrons derived from 8-oxidation of saturated fatty acids has remained hypothetical. Here, we studied a previously noncharacterized membrane-bound oxidoreductase (EMO) from Syntrophus aciditrophicus containing two heme b cofactors and 8-methylmenaquinone as key redox components of the redox loop-driven reduction of CO2 by acyl-coenzyme A (CoA). Using solubilized EMO and proteoliposomes, we reconstituted the entire electron transfer chain from acyl-CoA to CO2 and identified the transfer from a high- to a low-potential heme b with perfectly adjusted midpoint potentials as key steps in syntrophic fatty acid oxidation. The results close our gap of knowledge in the conversion of biomass into methane and identify EMOs as key players of 8-oxidation in (methyl)menaquinone-containing organisms.</description><identifier>ISSN: 0027-8424</identifier><identifier>DOI: 10.1073/pnas.2111682118|1of6</identifier><identifier>PMID: 34583996</identifier><language>eng</language><publisher>WASHINGTON: Natl Acad Sciences</publisher><subject>Multidisciplinary Sciences ; Science &amp; Technology ; Science &amp; Technology - Other Topics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-10, Vol.118 (40), Article 2111682118</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000705925500005</woscitedreferencesoriginalsourcerecordid><cites>FETCH-webofscience_primary_0007059255000053</cites><orcidid>0000-0001-6845-6133 ; 0000-0003-0214-3745 ; 0000-0002-7115-7262 ; 0000-0003-2459-2226 ; 0000-0002-4642-6088 ; 0000-0001-5913-0334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Agne, Michael</creatorcontrib><creatorcontrib>Estelmann, Sebastian</creatorcontrib><creatorcontrib>Seelmann, Carola S.</creatorcontrib><creatorcontrib>Kung, Johannes</creatorcontrib><creatorcontrib>Wilkens, Dennis</creatorcontrib><creatorcontrib>Koch, Hans-Georg</creatorcontrib><creatorcontrib>van der Does, Chris</creatorcontrib><creatorcontrib>Albers, Sonja</creatorcontrib><creatorcontrib>von Ballmoos, Christoph</creatorcontrib><creatorcontrib>Simon, Joerg</creatorcontrib><creatorcontrib>Boll, Matthias</creatorcontrib><title>The missing enzymatic link in syntrophic methane formation from fatty acids</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><description>The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to the methanogenic substrates acetate, H2, CO2, or formate. While the concept of syntrophic methane formation was developed half a century ago, the highly endergonic reduction of CO2 to methane by electrons derived from 8-oxidation of saturated fatty acids has remained hypothetical. Here, we studied a previously noncharacterized membrane-bound oxidoreductase (EMO) from Syntrophus aciditrophicus containing two heme b cofactors and 8-methylmenaquinone as key redox components of the redox loop-driven reduction of CO2 by acyl-coenzyme A (CoA). Using solubilized EMO and proteoliposomes, we reconstituted the entire electron transfer chain from acyl-CoA to CO2 and identified the transfer from a high- to a low-potential heme b with perfectly adjusted midpoint potentials as key steps in syntrophic fatty acid oxidation. The results close our gap of knowledge in the conversion of biomass into methane and identify EMOs as key players of 8-oxidation in (methyl)menaquinone-containing organisms.</description><subject>Multidisciplinary Sciences</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><issn>0027-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqVjsFOwzAQRPcAoqXwBxz2jlrWcZw45wiExLX3ygSbGOp1ZBuhID6egPgAuMyMRk-aAbgStBPUypuJTd5VQohGL6o_RXTNCayJqnar66pewXnOL0TUKU1nsJK10rLrmjU87EeLwefs-Rktf8zBFD_g0fMresY8c0lxGpcq2DIatuhi-mYio0sxoDOlzGgG_5Qv4NSZY7aXv76B67vbfX-_fbeP0eXBWx7sYUo-mDQfljctqa5Sakmk5Ab03-nel58PfXzjIv839AV2glz9</recordid><startdate>20211005</startdate><enddate>20211005</enddate><creator>Agne, Michael</creator><creator>Estelmann, Sebastian</creator><creator>Seelmann, Carola S.</creator><creator>Kung, Johannes</creator><creator>Wilkens, Dennis</creator><creator>Koch, Hans-Georg</creator><creator>van der Does, Chris</creator><creator>Albers, Sonja</creator><creator>von Ballmoos, Christoph</creator><creator>Simon, Joerg</creator><creator>Boll, Matthias</creator><general>Natl Acad Sciences</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><orcidid>https://orcid.org/0000-0001-6845-6133</orcidid><orcidid>https://orcid.org/0000-0003-0214-3745</orcidid><orcidid>https://orcid.org/0000-0002-7115-7262</orcidid><orcidid>https://orcid.org/0000-0003-2459-2226</orcidid><orcidid>https://orcid.org/0000-0002-4642-6088</orcidid><orcidid>https://orcid.org/0000-0001-5913-0334</orcidid></search><sort><creationdate>20211005</creationdate><title>The missing enzymatic link in syntrophic methane formation from fatty acids</title><author>Agne, Michael ; Estelmann, Sebastian ; Seelmann, Carola S. ; Kung, Johannes ; Wilkens, Dennis ; Koch, Hans-Georg ; van der Does, Chris ; Albers, Sonja ; von Ballmoos, Christoph ; Simon, Joerg ; Boll, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-webofscience_primary_0007059255000053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Multidisciplinary Sciences</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agne, Michael</creatorcontrib><creatorcontrib>Estelmann, Sebastian</creatorcontrib><creatorcontrib>Seelmann, Carola S.</creatorcontrib><creatorcontrib>Kung, Johannes</creatorcontrib><creatorcontrib>Wilkens, Dennis</creatorcontrib><creatorcontrib>Koch, Hans-Georg</creatorcontrib><creatorcontrib>van der Does, Chris</creatorcontrib><creatorcontrib>Albers, Sonja</creatorcontrib><creatorcontrib>von Ballmoos, Christoph</creatorcontrib><creatorcontrib>Simon, Joerg</creatorcontrib><creatorcontrib>Boll, Matthias</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agne, Michael</au><au>Estelmann, Sebastian</au><au>Seelmann, Carola S.</au><au>Kung, Johannes</au><au>Wilkens, Dennis</au><au>Koch, Hans-Georg</au><au>van der Does, Chris</au><au>Albers, Sonja</au><au>von Ballmoos, Christoph</au><au>Simon, Joerg</au><au>Boll, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The missing enzymatic link in syntrophic methane formation from fatty acids</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><date>2021-10-05</date><risdate>2021</risdate><volume>118</volume><issue>40</issue><artnum>2111682118</artnum><issn>0027-8424</issn><abstract>The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to the methanogenic substrates acetate, H2, CO2, or formate. While the concept of syntrophic methane formation was developed half a century ago, the highly endergonic reduction of CO2 to methane by electrons derived from 8-oxidation of saturated fatty acids has remained hypothetical. Here, we studied a previously noncharacterized membrane-bound oxidoreductase (EMO) from Syntrophus aciditrophicus containing two heme b cofactors and 8-methylmenaquinone as key redox components of the redox loop-driven reduction of CO2 by acyl-coenzyme A (CoA). Using solubilized EMO and proteoliposomes, we reconstituted the entire electron transfer chain from acyl-CoA to CO2 and identified the transfer from a high- to a low-potential heme b with perfectly adjusted midpoint potentials as key steps in syntrophic fatty acid oxidation. The results close our gap of knowledge in the conversion of biomass into methane and identify EMOs as key players of 8-oxidation in (methyl)menaquinone-containing organisms.</abstract><cop>WASHINGTON</cop><pub>Natl Acad Sciences</pub><pmid>34583996</pmid><doi>10.1073/pnas.2111682118|1of6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6845-6133</orcidid><orcidid>https://orcid.org/0000-0003-0214-3745</orcidid><orcidid>https://orcid.org/0000-0002-7115-7262</orcidid><orcidid>https://orcid.org/0000-0003-2459-2226</orcidid><orcidid>https://orcid.org/0000-0002-4642-6088</orcidid><orcidid>https://orcid.org/0000-0001-5913-0334</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-10, Vol.118 (40), Article 2111682118
issn 0027-8424
language eng
recordid cdi_webofscience_primary_000705925500005CitationCount
source JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Multidisciplinary Sciences
Science & Technology
Science & Technology - Other Topics
title The missing enzymatic link in syntrophic methane formation from fatty acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20missing%20enzymatic%20link%20in%20syntrophic%20methane%20formation%20from%20fatty%20acids&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Agne,%20Michael&rft.date=2021-10-05&rft.volume=118&rft.issue=40&rft.artnum=2111682118&rft.issn=0027-8424&rft_id=info:doi/10.1073/pnas.2111682118%7C1of6&rft_dat=%3Cwebofscience%3E000705925500005%3C/webofscience%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34583996&rfr_iscdi=true