The missing enzymatic link in syntrophic methane formation from fatty acids
The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-10, Vol.118 (40), Article 2111682118 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 40 |
container_start_page | |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Agne, Michael Estelmann, Sebastian Seelmann, Carola S. Kung, Johannes Wilkens, Dennis Koch, Hans-Georg van der Does, Chris Albers, Sonja von Ballmoos, Christoph Simon, Joerg Boll, Matthias |
description | The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to the methanogenic substrates acetate, H2, CO2, or formate. While the concept of syntrophic methane formation was developed half a century ago, the highly endergonic reduction of CO2 to methane by electrons derived from 8-oxidation of saturated fatty acids has remained hypothetical. Here, we studied a previously noncharacterized membrane-bound oxidoreductase (EMO) from Syntrophus aciditrophicus containing two heme b cofactors and 8-methylmenaquinone as key redox components of the redox loop-driven reduction of CO2 by acyl-coenzyme A (CoA). Using solubilized EMO and proteoliposomes, we reconstituted the entire electron transfer chain from acyl-CoA to CO2 and identified the transfer from a high- to a low-potential heme b with perfectly adjusted midpoint potentials as key steps in syntrophic fatty acid oxidation. The results close our gap of knowledge in the conversion of biomass into methane and identify EMOs as key players of 8-oxidation in (methyl)menaquinone-containing organisms. |
doi_str_mv | 10.1073/pnas.2111682118|1of6 |
format | Article |
fullrecord | <record><control><sourceid>webofscience</sourceid><recordid>TN_cdi_webofscience_primary_000705925500005CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000705925500005</sourcerecordid><originalsourceid>FETCH-webofscience_primary_0007059255000053</originalsourceid><addsrcrecordid>eNqVjsFOwzAQRPcAoqXwBxz2jlrWcZw45wiExLX3ygSbGOp1ZBuhID6egPgAuMyMRk-aAbgStBPUypuJTd5VQohGL6o_RXTNCayJqnar66pewXnOL0TUKU1nsJK10rLrmjU87EeLwefs-Rktf8zBFD_g0fMresY8c0lxGpcq2DIatuhi-mYio0sxoDOlzGgG_5Qv4NSZY7aXv76B67vbfX-_fbeP0eXBWx7sYUo-mDQfljctqa5Sakmk5Ab03-nel58PfXzjIv839AV2glz9</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The missing enzymatic link in syntrophic methane formation from fatty acids</title><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Agne, Michael ; Estelmann, Sebastian ; Seelmann, Carola S. ; Kung, Johannes ; Wilkens, Dennis ; Koch, Hans-Georg ; van der Does, Chris ; Albers, Sonja ; von Ballmoos, Christoph ; Simon, Joerg ; Boll, Matthias</creator><creatorcontrib>Agne, Michael ; Estelmann, Sebastian ; Seelmann, Carola S. ; Kung, Johannes ; Wilkens, Dennis ; Koch, Hans-Georg ; van der Does, Chris ; Albers, Sonja ; von Ballmoos, Christoph ; Simon, Joerg ; Boll, Matthias</creatorcontrib><description>The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to the methanogenic substrates acetate, H2, CO2, or formate. While the concept of syntrophic methane formation was developed half a century ago, the highly endergonic reduction of CO2 to methane by electrons derived from 8-oxidation of saturated fatty acids has remained hypothetical. Here, we studied a previously noncharacterized membrane-bound oxidoreductase (EMO) from Syntrophus aciditrophicus containing two heme b cofactors and 8-methylmenaquinone as key redox components of the redox loop-driven reduction of CO2 by acyl-coenzyme A (CoA). Using solubilized EMO and proteoliposomes, we reconstituted the entire electron transfer chain from acyl-CoA to CO2 and identified the transfer from a high- to a low-potential heme b with perfectly adjusted midpoint potentials as key steps in syntrophic fatty acid oxidation. The results close our gap of knowledge in the conversion of biomass into methane and identify EMOs as key players of 8-oxidation in (methyl)menaquinone-containing organisms.</description><identifier>ISSN: 0027-8424</identifier><identifier>DOI: 10.1073/pnas.2111682118|1of6</identifier><identifier>PMID: 34583996</identifier><language>eng</language><publisher>WASHINGTON: Natl Acad Sciences</publisher><subject>Multidisciplinary Sciences ; Science & Technology ; Science & Technology - Other Topics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-10, Vol.118 (40), Article 2111682118</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000705925500005</woscitedreferencesoriginalsourcerecordid><cites>FETCH-webofscience_primary_0007059255000053</cites><orcidid>0000-0001-6845-6133 ; 0000-0003-0214-3745 ; 0000-0002-7115-7262 ; 0000-0003-2459-2226 ; 0000-0002-4642-6088 ; 0000-0001-5913-0334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Agne, Michael</creatorcontrib><creatorcontrib>Estelmann, Sebastian</creatorcontrib><creatorcontrib>Seelmann, Carola S.</creatorcontrib><creatorcontrib>Kung, Johannes</creatorcontrib><creatorcontrib>Wilkens, Dennis</creatorcontrib><creatorcontrib>Koch, Hans-Georg</creatorcontrib><creatorcontrib>van der Does, Chris</creatorcontrib><creatorcontrib>Albers, Sonja</creatorcontrib><creatorcontrib>von Ballmoos, Christoph</creatorcontrib><creatorcontrib>Simon, Joerg</creatorcontrib><creatorcontrib>Boll, Matthias</creatorcontrib><title>The missing enzymatic link in syntrophic methane formation from fatty acids</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><description>The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to the methanogenic substrates acetate, H2, CO2, or formate. While the concept of syntrophic methane formation was developed half a century ago, the highly endergonic reduction of CO2 to methane by electrons derived from 8-oxidation of saturated fatty acids has remained hypothetical. Here, we studied a previously noncharacterized membrane-bound oxidoreductase (EMO) from Syntrophus aciditrophicus containing two heme b cofactors and 8-methylmenaquinone as key redox components of the redox loop-driven reduction of CO2 by acyl-coenzyme A (CoA). Using solubilized EMO and proteoliposomes, we reconstituted the entire electron transfer chain from acyl-CoA to CO2 and identified the transfer from a high- to a low-potential heme b with perfectly adjusted midpoint potentials as key steps in syntrophic fatty acid oxidation. The results close our gap of knowledge in the conversion of biomass into methane and identify EMOs as key players of 8-oxidation in (methyl)menaquinone-containing organisms.</description><subject>Multidisciplinary Sciences</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><issn>0027-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqVjsFOwzAQRPcAoqXwBxz2jlrWcZw45wiExLX3ygSbGOp1ZBuhID6egPgAuMyMRk-aAbgStBPUypuJTd5VQohGL6o_RXTNCayJqnar66pewXnOL0TUKU1nsJK10rLrmjU87EeLwefs-Rktf8zBFD_g0fMresY8c0lxGpcq2DIatuhi-mYio0sxoDOlzGgG_5Qv4NSZY7aXv76B67vbfX-_fbeP0eXBWx7sYUo-mDQfljctqa5Sakmk5Ab03-nel58PfXzjIv839AV2glz9</recordid><startdate>20211005</startdate><enddate>20211005</enddate><creator>Agne, Michael</creator><creator>Estelmann, Sebastian</creator><creator>Seelmann, Carola S.</creator><creator>Kung, Johannes</creator><creator>Wilkens, Dennis</creator><creator>Koch, Hans-Georg</creator><creator>van der Does, Chris</creator><creator>Albers, Sonja</creator><creator>von Ballmoos, Christoph</creator><creator>Simon, Joerg</creator><creator>Boll, Matthias</creator><general>Natl Acad Sciences</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><orcidid>https://orcid.org/0000-0001-6845-6133</orcidid><orcidid>https://orcid.org/0000-0003-0214-3745</orcidid><orcidid>https://orcid.org/0000-0002-7115-7262</orcidid><orcidid>https://orcid.org/0000-0003-2459-2226</orcidid><orcidid>https://orcid.org/0000-0002-4642-6088</orcidid><orcidid>https://orcid.org/0000-0001-5913-0334</orcidid></search><sort><creationdate>20211005</creationdate><title>The missing enzymatic link in syntrophic methane formation from fatty acids</title><author>Agne, Michael ; Estelmann, Sebastian ; Seelmann, Carola S. ; Kung, Johannes ; Wilkens, Dennis ; Koch, Hans-Georg ; van der Does, Chris ; Albers, Sonja ; von Ballmoos, Christoph ; Simon, Joerg ; Boll, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-webofscience_primary_0007059255000053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Multidisciplinary Sciences</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agne, Michael</creatorcontrib><creatorcontrib>Estelmann, Sebastian</creatorcontrib><creatorcontrib>Seelmann, Carola S.</creatorcontrib><creatorcontrib>Kung, Johannes</creatorcontrib><creatorcontrib>Wilkens, Dennis</creatorcontrib><creatorcontrib>Koch, Hans-Georg</creatorcontrib><creatorcontrib>van der Does, Chris</creatorcontrib><creatorcontrib>Albers, Sonja</creatorcontrib><creatorcontrib>von Ballmoos, Christoph</creatorcontrib><creatorcontrib>Simon, Joerg</creatorcontrib><creatorcontrib>Boll, Matthias</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agne, Michael</au><au>Estelmann, Sebastian</au><au>Seelmann, Carola S.</au><au>Kung, Johannes</au><au>Wilkens, Dennis</au><au>Koch, Hans-Georg</au><au>van der Does, Chris</au><au>Albers, Sonja</au><au>von Ballmoos, Christoph</au><au>Simon, Joerg</au><au>Boll, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The missing enzymatic link in syntrophic methane formation from fatty acids</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><date>2021-10-05</date><risdate>2021</risdate><volume>118</volume><issue>40</issue><artnum>2111682118</artnum><issn>0027-8424</issn><abstract>The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to the methanogenic substrates acetate, H2, CO2, or formate. While the concept of syntrophic methane formation was developed half a century ago, the highly endergonic reduction of CO2 to methane by electrons derived from 8-oxidation of saturated fatty acids has remained hypothetical. Here, we studied a previously noncharacterized membrane-bound oxidoreductase (EMO) from Syntrophus aciditrophicus containing two heme b cofactors and 8-methylmenaquinone as key redox components of the redox loop-driven reduction of CO2 by acyl-coenzyme A (CoA). Using solubilized EMO and proteoliposomes, we reconstituted the entire electron transfer chain from acyl-CoA to CO2 and identified the transfer from a high- to a low-potential heme b with perfectly adjusted midpoint potentials as key steps in syntrophic fatty acid oxidation. The results close our gap of knowledge in the conversion of biomass into methane and identify EMOs as key players of 8-oxidation in (methyl)menaquinone-containing organisms.</abstract><cop>WASHINGTON</cop><pub>Natl Acad Sciences</pub><pmid>34583996</pmid><doi>10.1073/pnas.2111682118|1of6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6845-6133</orcidid><orcidid>https://orcid.org/0000-0003-0214-3745</orcidid><orcidid>https://orcid.org/0000-0002-7115-7262</orcidid><orcidid>https://orcid.org/0000-0003-2459-2226</orcidid><orcidid>https://orcid.org/0000-0002-4642-6088</orcidid><orcidid>https://orcid.org/0000-0001-5913-0334</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-10, Vol.118 (40), Article 2111682118 |
issn | 0027-8424 |
language | eng |
recordid | cdi_webofscience_primary_000705925500005CitationCount |
source | JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Multidisciplinary Sciences Science & Technology Science & Technology - Other Topics |
title | The missing enzymatic link in syntrophic methane formation from fatty acids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20missing%20enzymatic%20link%20in%20syntrophic%20methane%20formation%20from%20fatty%20acids&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Agne,%20Michael&rft.date=2021-10-05&rft.volume=118&rft.issue=40&rft.artnum=2111682118&rft.issn=0027-8424&rft_id=info:doi/10.1073/pnas.2111682118%7C1of6&rft_dat=%3Cwebofscience%3E000705925500005%3C/webofscience%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34583996&rfr_iscdi=true |