First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects
The interstitial migration of helium in alpha-U, which is planned to be used as a tritium storage material for nuclear fusion reactors and as a metallic fuel for advanced nuclear reactors, is studied by first-principles calculations. First, all migration paths are identified using the nudged elastic...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2021-09, Vol.125 (38), p.21101-21111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21111 |
---|---|
container_issue | 38 |
container_start_page | 21101 |
container_title | Journal of physical chemistry. C |
container_volume | 125 |
creator | Kim, Jae-Hyuk Lee, Jae-Uk Chang, Min Ho Oda, Takuji |
description | The interstitial migration of helium in alpha-U, which is planned to be used as a tritium storage material for nuclear fusion reactors and as a metallic fuel for advanced nuclear reactors, is studied by first-principles calculations. First, all migration paths are identified using the nudged elastic band method, and the migration barrier is determined for each path considering the thermal expansion of the lattice. In addition, the jump attempt frequencies are determined by applying harmonic transition state theory coupled with vibration analysis. Subsequently, the diffusion coefficient is evaluated numerically by kinetic Monte Carlo calculations using the determined migration barriers and jump attempt frequencies for all migration paths. Diffusion in the [010]-direction is found to be the most unlikely until sufficiently high temperature, while [001]-diffusion is the most dominant diffusion direction through the whole temperature range. The isotope effect, which is important because the beta decay of tritium produces helium-3, is not large and approaches the classical limit as the temperature increases. The quantum tunneling crossover temperature is computed to be approximately 100 K for helium-3 and 86 K for helium-4, which ensures the validity of the present calculation results over a wide temperature range. The diffusion coefficients are obtained as D = ( 9.67 × 10 − 4 ) × exp ( − 0.202 eV k T ) c m 2 / s for helium-3 and D = ( 8.48 × 10 − 4 ) × exp ( − 0.201 eV k T ) c m 2 / s for helium-4 over a temperature range from 200 to 900 K. |
doi_str_mv | 10.1021/acs.jpcc.1c04053 |
format | Article |
fullrecord | <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000704295900039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i95205393</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-63e9930fbb5a7c641445af916042c652d7e441c83822ba0f97b1aa516c2d94c13</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4soOKd3j7m7ziRN2uU46uYGAxXcuaRp4jK6pDSpsptfYV_RT2L2h90ET_nx8nvevDxRdI_gEEGMHrlww3UjxBAJSCBNLqIeYgmOM0Lp5TmT7Dq6cW4NQwOipBftprp1Pn5ttRG6qaUDOa9FV3OvrXHAKuBXEjxppTqnP7Xf7kdz42WgtNe8BjNZ624DtAHjulnxn-_dEuSB1ZUMSz_A2GhnfWub7QDMQ7KNBBOlpPBuALipwFvHjQ8bTsPb6Erx2sm709uPltPJez6LFy_P83y8iDkeQR-niWQsgaosKc9EShAhlCuGUkiwSCmuMkkIEqNkhHHJoWJZiTinKBW4YkSgpB_B417RWudaqYqm1RvebgsEi73SIigt9kqLk9KAPByRL1la5YSWRsgzBiHMwueMspASFtqj_7dz7Q_Kc9sZH9DBET2cYLvWBBN_3_UL5lKebg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Kim, Jae-Hyuk ; Lee, Jae-Uk ; Chang, Min Ho ; Oda, Takuji</creator><creatorcontrib>Kim, Jae-Hyuk ; Lee, Jae-Uk ; Chang, Min Ho ; Oda, Takuji</creatorcontrib><description>The interstitial migration of helium in alpha-U, which is planned to be used as a tritium storage material for nuclear fusion reactors and as a metallic fuel for advanced nuclear reactors, is studied by first-principles calculations. First, all migration paths are identified using the nudged elastic band method, and the migration barrier is determined for each path considering the thermal expansion of the lattice. In addition, the jump attempt frequencies are determined by applying harmonic transition state theory coupled with vibration analysis. Subsequently, the diffusion coefficient is evaluated numerically by kinetic Monte Carlo calculations using the determined migration barriers and jump attempt frequencies for all migration paths. Diffusion in the [010]-direction is found to be the most unlikely until sufficiently high temperature, while [001]-diffusion is the most dominant diffusion direction through the whole temperature range. The isotope effect, which is important because the beta decay of tritium produces helium-3, is not large and approaches the classical limit as the temperature increases. The quantum tunneling crossover temperature is computed to be approximately 100 K for helium-3 and 86 K for helium-4, which ensures the validity of the present calculation results over a wide temperature range. The diffusion coefficients are obtained as D = ( 9.67 × 10 − 4 ) × exp ( − 0.202 eV k T ) c m 2 / s for helium-3 and D = ( 8.48 × 10 − 4 ) × exp ( − 0.201 eV k T ) c m 2 / s for helium-4 over a temperature range from 200 to 900 K.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c04053</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces ; Chemistry ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Physical Sciences ; Science & Technology ; Science & Technology - Other Topics ; Technology</subject><ispartof>Journal of physical chemistry. C, 2021-09, Vol.125 (38), p.21101-21111</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000704295900039</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a280t-63e9930fbb5a7c641445af916042c652d7e441c83822ba0f97b1aa516c2d94c13</citedby><cites>FETCH-LOGICAL-a280t-63e9930fbb5a7c641445af916042c652d7e441c83822ba0f97b1aa516c2d94c13</cites><orcidid>0000-0001-5746-3899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c04053$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c04053$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids></links><search><creatorcontrib>Kim, Jae-Hyuk</creatorcontrib><creatorcontrib>Lee, Jae-Uk</creatorcontrib><creatorcontrib>Chang, Min Ho</creatorcontrib><creatorcontrib>Oda, Takuji</creatorcontrib><title>First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects</title><title>Journal of physical chemistry. C</title><addtitle>J PHYS CHEM C</addtitle><addtitle>J. Phys. Chem. C</addtitle><description>The interstitial migration of helium in alpha-U, which is planned to be used as a tritium storage material for nuclear fusion reactors and as a metallic fuel for advanced nuclear reactors, is studied by first-principles calculations. First, all migration paths are identified using the nudged elastic band method, and the migration barrier is determined for each path considering the thermal expansion of the lattice. In addition, the jump attempt frequencies are determined by applying harmonic transition state theory coupled with vibration analysis. Subsequently, the diffusion coefficient is evaluated numerically by kinetic Monte Carlo calculations using the determined migration barriers and jump attempt frequencies for all migration paths. Diffusion in the [010]-direction is found to be the most unlikely until sufficiently high temperature, while [001]-diffusion is the most dominant diffusion direction through the whole temperature range. The isotope effect, which is important because the beta decay of tritium produces helium-3, is not large and approaches the classical limit as the temperature increases. The quantum tunneling crossover temperature is computed to be approximately 100 K for helium-3 and 86 K for helium-4, which ensures the validity of the present calculation results over a wide temperature range. The diffusion coefficients are obtained as D = ( 9.67 × 10 − 4 ) × exp ( − 0.202 eV k T ) c m 2 / s for helium-3 and D = ( 8.48 × 10 − 4 ) × exp ( − 0.201 eV k T ) c m 2 / s for helium-4 over a temperature range from 200 to 900 K.</description><subject>C: Physical Properties of Materials and Interfaces</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE9LwzAYh4soOKd3j7m7ziRN2uU46uYGAxXcuaRp4jK6pDSpsptfYV_RT2L2h90ET_nx8nvevDxRdI_gEEGMHrlww3UjxBAJSCBNLqIeYgmOM0Lp5TmT7Dq6cW4NQwOipBftprp1Pn5ttRG6qaUDOa9FV3OvrXHAKuBXEjxppTqnP7Xf7kdz42WgtNe8BjNZ624DtAHjulnxn-_dEuSB1ZUMSz_A2GhnfWub7QDMQ7KNBBOlpPBuALipwFvHjQ8bTsPb6Erx2sm709uPltPJez6LFy_P83y8iDkeQR-niWQsgaosKc9EShAhlCuGUkiwSCmuMkkIEqNkhHHJoWJZiTinKBW4YkSgpB_B417RWudaqYqm1RvebgsEi73SIigt9kqLk9KAPByRL1la5YSWRsgzBiHMwueMspASFtqj_7dz7Q_Kc9sZH9DBET2cYLvWBBN_3_UL5lKebg</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Kim, Jae-Hyuk</creator><creator>Lee, Jae-Uk</creator><creator>Chang, Min Ho</creator><creator>Oda, Takuji</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5746-3899</orcidid></search><sort><creationdate>20210930</creationdate><title>First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects</title><author>Kim, Jae-Hyuk ; Lee, Jae-Uk ; Chang, Min Ho ; Oda, Takuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-63e9930fbb5a7c641445af916042c652d7e441c83822ba0f97b1aa516c2d94c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jae-Hyuk</creatorcontrib><creatorcontrib>Lee, Jae-Uk</creatorcontrib><creatorcontrib>Chang, Min Ho</creatorcontrib><creatorcontrib>Oda, Takuji</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jae-Hyuk</au><au>Lee, Jae-Uk</au><au>Chang, Min Ho</au><au>Oda, Takuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects</atitle><jtitle>Journal of physical chemistry. C</jtitle><stitle>J PHYS CHEM C</stitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-09-30</date><risdate>2021</risdate><volume>125</volume><issue>38</issue><spage>21101</spage><epage>21111</epage><pages>21101-21111</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The interstitial migration of helium in alpha-U, which is planned to be used as a tritium storage material for nuclear fusion reactors and as a metallic fuel for advanced nuclear reactors, is studied by first-principles calculations. First, all migration paths are identified using the nudged elastic band method, and the migration barrier is determined for each path considering the thermal expansion of the lattice. In addition, the jump attempt frequencies are determined by applying harmonic transition state theory coupled with vibration analysis. Subsequently, the diffusion coefficient is evaluated numerically by kinetic Monte Carlo calculations using the determined migration barriers and jump attempt frequencies for all migration paths. Diffusion in the [010]-direction is found to be the most unlikely until sufficiently high temperature, while [001]-diffusion is the most dominant diffusion direction through the whole temperature range. The isotope effect, which is important because the beta decay of tritium produces helium-3, is not large and approaches the classical limit as the temperature increases. The quantum tunneling crossover temperature is computed to be approximately 100 K for helium-3 and 86 K for helium-4, which ensures the validity of the present calculation results over a wide temperature range. The diffusion coefficients are obtained as D = ( 9.67 × 10 − 4 ) × exp ( − 0.202 eV k T ) c m 2 / s for helium-3 and D = ( 8.48 × 10 − 4 ) × exp ( − 0.201 eV k T ) c m 2 / s for helium-4 over a temperature range from 200 to 900 K.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c04053</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5746-3899</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2021-09, Vol.125 (38), p.21101-21111 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_webofscience_primary_000704295900039 |
source | ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | C: Physical Properties of Materials and Interfaces Chemistry Chemistry, Physical Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Physical Sciences Science & Technology Science & Technology - Other Topics Technology |
title | First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-Principles%20Calculations%20of%20the%20Diffusivity%20of%20Interstitial%20Helium%20in%20Alpha%E2%80%91U%20Considering%20Anisotropy,%20Isotope%20Effects,%20and%20Quantum%20Effects&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kim,%20Jae-Hyuk&rft.date=2021-09-30&rft.volume=125&rft.issue=38&rft.spage=21101&rft.epage=21111&rft.pages=21101-21111&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c04053&rft_dat=%3Cacs_webof%3Ei95205393%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |