First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects

The interstitial migration of helium in alpha-U, which is planned to be used as a tritium storage material for nuclear fusion reactors and as a metallic fuel for advanced nuclear reactors, is studied by first-principles calculations. First, all migration paths are identified using the nudged elastic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-09, Vol.125 (38), p.21101-21111
Hauptverfasser: Kim, Jae-Hyuk, Lee, Jae-Uk, Chang, Min Ho, Oda, Takuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21111
container_issue 38
container_start_page 21101
container_title Journal of physical chemistry. C
container_volume 125
creator Kim, Jae-Hyuk
Lee, Jae-Uk
Chang, Min Ho
Oda, Takuji
description The interstitial migration of helium in alpha-U, which is planned to be used as a tritium storage material for nuclear fusion reactors and as a metallic fuel for advanced nuclear reactors, is studied by first-principles calculations. First, all migration paths are identified using the nudged elastic band method, and the migration barrier is determined for each path considering the thermal expansion of the lattice. In addition, the jump attempt frequencies are determined by applying harmonic transition state theory coupled with vibration analysis. Subsequently, the diffusion coefficient is evaluated numerically by kinetic Monte Carlo calculations using the determined migration barriers and jump attempt frequencies for all migration paths. Diffusion in the [010]-direction is found to be the most unlikely until sufficiently high temperature, while [001]-diffusion is the most dominant diffusion direction through the whole temperature range. The isotope effect, which is important because the beta decay of tritium produces helium-3, is not large and approaches the classical limit as the temperature increases. The quantum tunneling crossover temperature is computed to be approximately 100 K for helium-3 and 86 K for helium-4, which ensures the validity of the present calculation results over a wide temperature range. The diffusion coefficients are obtained as D = ( 9.67 × 10 − 4 ) × exp ( − 0.202 eV k T ) c m 2 / s for helium-3 and D = ( 8.48 × 10 − 4 ) × exp ( − 0.201 eV k T ) c m 2 / s for helium-4 over a temperature range from 200 to 900 K.
doi_str_mv 10.1021/acs.jpcc.1c04053
format Article
fullrecord <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000704295900039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i95205393</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-63e9930fbb5a7c641445af916042c652d7e441c83822ba0f97b1aa516c2d94c13</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4soOKd3j7m7ziRN2uU46uYGAxXcuaRp4jK6pDSpsptfYV_RT2L2h90ET_nx8nvevDxRdI_gEEGMHrlww3UjxBAJSCBNLqIeYgmOM0Lp5TmT7Dq6cW4NQwOipBftprp1Pn5ttRG6qaUDOa9FV3OvrXHAKuBXEjxppTqnP7Xf7kdz42WgtNe8BjNZ624DtAHjulnxn-_dEuSB1ZUMSz_A2GhnfWub7QDMQ7KNBBOlpPBuALipwFvHjQ8bTsPb6Erx2sm709uPltPJez6LFy_P83y8iDkeQR-niWQsgaosKc9EShAhlCuGUkiwSCmuMkkIEqNkhHHJoWJZiTinKBW4YkSgpB_B417RWudaqYqm1RvebgsEi73SIigt9kqLk9KAPByRL1la5YSWRsgzBiHMwueMspASFtqj_7dz7Q_Kc9sZH9DBET2cYLvWBBN_3_UL5lKebg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Kim, Jae-Hyuk ; Lee, Jae-Uk ; Chang, Min Ho ; Oda, Takuji</creator><creatorcontrib>Kim, Jae-Hyuk ; Lee, Jae-Uk ; Chang, Min Ho ; Oda, Takuji</creatorcontrib><description>The interstitial migration of helium in alpha-U, which is planned to be used as a tritium storage material for nuclear fusion reactors and as a metallic fuel for advanced nuclear reactors, is studied by first-principles calculations. First, all migration paths are identified using the nudged elastic band method, and the migration barrier is determined for each path considering the thermal expansion of the lattice. In addition, the jump attempt frequencies are determined by applying harmonic transition state theory coupled with vibration analysis. Subsequently, the diffusion coefficient is evaluated numerically by kinetic Monte Carlo calculations using the determined migration barriers and jump attempt frequencies for all migration paths. Diffusion in the [010]-direction is found to be the most unlikely until sufficiently high temperature, while [001]-diffusion is the most dominant diffusion direction through the whole temperature range. The isotope effect, which is important because the beta decay of tritium produces helium-3, is not large and approaches the classical limit as the temperature increases. The quantum tunneling crossover temperature is computed to be approximately 100 K for helium-3 and 86 K for helium-4, which ensures the validity of the present calculation results over a wide temperature range. The diffusion coefficients are obtained as D = ( 9.67 × 10 − 4 ) × exp ( − 0.202 eV k T ) c m 2 / s for helium-3 and D = ( 8.48 × 10 − 4 ) × exp ( − 0.201 eV k T ) c m 2 / s for helium-4 over a temperature range from 200 to 900 K.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c04053</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces ; Chemistry ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>Journal of physical chemistry. C, 2021-09, Vol.125 (38), p.21101-21111</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000704295900039</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a280t-63e9930fbb5a7c641445af916042c652d7e441c83822ba0f97b1aa516c2d94c13</citedby><cites>FETCH-LOGICAL-a280t-63e9930fbb5a7c641445af916042c652d7e441c83822ba0f97b1aa516c2d94c13</cites><orcidid>0000-0001-5746-3899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c04053$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c04053$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids></links><search><creatorcontrib>Kim, Jae-Hyuk</creatorcontrib><creatorcontrib>Lee, Jae-Uk</creatorcontrib><creatorcontrib>Chang, Min Ho</creatorcontrib><creatorcontrib>Oda, Takuji</creatorcontrib><title>First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects</title><title>Journal of physical chemistry. C</title><addtitle>J PHYS CHEM C</addtitle><addtitle>J. Phys. Chem. C</addtitle><description>The interstitial migration of helium in alpha-U, which is planned to be used as a tritium storage material for nuclear fusion reactors and as a metallic fuel for advanced nuclear reactors, is studied by first-principles calculations. First, all migration paths are identified using the nudged elastic band method, and the migration barrier is determined for each path considering the thermal expansion of the lattice. In addition, the jump attempt frequencies are determined by applying harmonic transition state theory coupled with vibration analysis. Subsequently, the diffusion coefficient is evaluated numerically by kinetic Monte Carlo calculations using the determined migration barriers and jump attempt frequencies for all migration paths. Diffusion in the [010]-direction is found to be the most unlikely until sufficiently high temperature, while [001]-diffusion is the most dominant diffusion direction through the whole temperature range. The isotope effect, which is important because the beta decay of tritium produces helium-3, is not large and approaches the classical limit as the temperature increases. The quantum tunneling crossover temperature is computed to be approximately 100 K for helium-3 and 86 K for helium-4, which ensures the validity of the present calculation results over a wide temperature range. The diffusion coefficients are obtained as D = ( 9.67 × 10 − 4 ) × exp ( − 0.202 eV k T ) c m 2 / s for helium-3 and D = ( 8.48 × 10 − 4 ) × exp ( − 0.201 eV k T ) c m 2 / s for helium-4 over a temperature range from 200 to 900 K.</description><subject>C: Physical Properties of Materials and Interfaces</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE9LwzAYh4soOKd3j7m7ziRN2uU46uYGAxXcuaRp4jK6pDSpsptfYV_RT2L2h90ET_nx8nvevDxRdI_gEEGMHrlww3UjxBAJSCBNLqIeYgmOM0Lp5TmT7Dq6cW4NQwOipBftprp1Pn5ttRG6qaUDOa9FV3OvrXHAKuBXEjxppTqnP7Xf7kdz42WgtNe8BjNZ624DtAHjulnxn-_dEuSB1ZUMSz_A2GhnfWub7QDMQ7KNBBOlpPBuALipwFvHjQ8bTsPb6Erx2sm709uPltPJez6LFy_P83y8iDkeQR-niWQsgaosKc9EShAhlCuGUkiwSCmuMkkIEqNkhHHJoWJZiTinKBW4YkSgpB_B417RWudaqYqm1RvebgsEi73SIigt9kqLk9KAPByRL1la5YSWRsgzBiHMwueMspASFtqj_7dz7Q_Kc9sZH9DBET2cYLvWBBN_3_UL5lKebg</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Kim, Jae-Hyuk</creator><creator>Lee, Jae-Uk</creator><creator>Chang, Min Ho</creator><creator>Oda, Takuji</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5746-3899</orcidid></search><sort><creationdate>20210930</creationdate><title>First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects</title><author>Kim, Jae-Hyuk ; Lee, Jae-Uk ; Chang, Min Ho ; Oda, Takuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-63e9930fbb5a7c641445af916042c652d7e441c83822ba0f97b1aa516c2d94c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jae-Hyuk</creatorcontrib><creatorcontrib>Lee, Jae-Uk</creatorcontrib><creatorcontrib>Chang, Min Ho</creatorcontrib><creatorcontrib>Oda, Takuji</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jae-Hyuk</au><au>Lee, Jae-Uk</au><au>Chang, Min Ho</au><au>Oda, Takuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects</atitle><jtitle>Journal of physical chemistry. C</jtitle><stitle>J PHYS CHEM C</stitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-09-30</date><risdate>2021</risdate><volume>125</volume><issue>38</issue><spage>21101</spage><epage>21111</epage><pages>21101-21111</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The interstitial migration of helium in alpha-U, which is planned to be used as a tritium storage material for nuclear fusion reactors and as a metallic fuel for advanced nuclear reactors, is studied by first-principles calculations. First, all migration paths are identified using the nudged elastic band method, and the migration barrier is determined for each path considering the thermal expansion of the lattice. In addition, the jump attempt frequencies are determined by applying harmonic transition state theory coupled with vibration analysis. Subsequently, the diffusion coefficient is evaluated numerically by kinetic Monte Carlo calculations using the determined migration barriers and jump attempt frequencies for all migration paths. Diffusion in the [010]-direction is found to be the most unlikely until sufficiently high temperature, while [001]-diffusion is the most dominant diffusion direction through the whole temperature range. The isotope effect, which is important because the beta decay of tritium produces helium-3, is not large and approaches the classical limit as the temperature increases. The quantum tunneling crossover temperature is computed to be approximately 100 K for helium-3 and 86 K for helium-4, which ensures the validity of the present calculation results over a wide temperature range. The diffusion coefficients are obtained as D = ( 9.67 × 10 − 4 ) × exp ( − 0.202 eV k T ) c m 2 / s for helium-3 and D = ( 8.48 × 10 − 4 ) × exp ( − 0.201 eV k T ) c m 2 / s for helium-4 over a temperature range from 200 to 900 K.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c04053</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5746-3899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-09, Vol.125 (38), p.21101-21111
issn 1932-7447
1932-7455
language eng
recordid cdi_webofscience_primary_000704295900039
source ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects C: Physical Properties of Materials and Interfaces
Chemistry
Chemistry, Physical
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Physical Sciences
Science & Technology
Science & Technology - Other Topics
Technology
title First-Principles Calculations of the Diffusivity of Interstitial Helium in Alpha‑U Considering Anisotropy, Isotope Effects, and Quantum Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-Principles%20Calculations%20of%20the%20Diffusivity%20of%20Interstitial%20Helium%20in%20Alpha%E2%80%91U%20Considering%20Anisotropy,%20Isotope%20Effects,%20and%20Quantum%20Effects&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kim,%20Jae-Hyuk&rft.date=2021-09-30&rft.volume=125&rft.issue=38&rft.spage=21101&rft.epage=21111&rft.pages=21101-21111&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c04053&rft_dat=%3Cacs_webof%3Ei95205393%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true