Robust Formation Control for Cooperative Underactuated Quadrotors via Reinforcement Learning

In this article, the model-free robust formation control problem is addressed for cooperative underactuated quadrotors involving unknown nonlinear dynamics and disturbances. Based on the hierarchical control scheme and the reinforcement learning theory, a robust controller is proposed without knowle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2021-10, Vol.32 (10), p.4577-4587
Hauptverfasser: Zhao, Wanbing, Liu, Hao, Lewis, Frank L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4587
container_issue 10
container_start_page 4577
container_title IEEE transaction on neural networks and learning systems
container_volume 32
creator Zhao, Wanbing
Liu, Hao
Lewis, Frank L.
description In this article, the model-free robust formation control problem is addressed for cooperative underactuated quadrotors involving unknown nonlinear dynamics and disturbances. Based on the hierarchical control scheme and the reinforcement learning theory, a robust controller is proposed without knowledge of each quadrotor dynamics, consisting of a distributed observer to estimate the position state of the leader, a position controller to achieve the desired formation, and an attitude controller to control the rotational motion. Simulation results on the multiquadrotor system confirm the effectiveness of the proposed model-free robust formation control method.
doi_str_mv 10.1109/TNNLS.2020.3023711
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000704111000027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9205206</ieee_id><sourcerecordid>2579440272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-8b75805c58caea65b86f097f74cb6bf58274e58affa969b1b8b5be8f4be544243</originalsourceid><addsrcrecordid>eNqNkE1rVDEUhi9isaXtH9DNBTeCzJicm6-7lEurwlDpF7gQQpI5kZSZZExyK_57006p4Mp3k5PwPIfwdt1rSpaUkvHDzcXF6noJBMhyIDBISl90R0AFLGBQ6uXzLL8ddqel3JEWQbhg46vucIBRths56r5fJTuX2p-nvDU1pNhPKdacNr1Puc1ph7m932N_G9dtdHU2Fdf95WzWOdWUS38fTH-FITbB4RZj7Vdocgzxx0l34M2m4OnTedzdnp_dTJ8Xq6-fvkwfVws3gKoLZSVXhDuunEEjuFXCk1F6yZwV1nMFkiFXxnszitFSqyy3qDyzyBkDNhx37_Z7dzn9nLFUvQ3F4WZjIqa5aGBMtKhBNfTtP-hdmnNsv9PA5cgYAQmNgj3lciolo9e7HLYm_9aU6If69WP9-qF-_VR_k9Re-oU2-eICRofPYqtfEkab3AJyCvWx7inNsTb1_f-rjX6zpwPiX2oEwoGI4Q-UZaCW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579440272</pqid></control><display><type>article</type><title>Robust Formation Control for Cooperative Underactuated Quadrotors via Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Wanbing ; Liu, Hao ; Lewis, Frank L.</creator><creatorcontrib>Zhao, Wanbing ; Liu, Hao ; Lewis, Frank L.</creatorcontrib><description>In this article, the model-free robust formation control problem is addressed for cooperative underactuated quadrotors involving unknown nonlinear dynamics and disturbances. Based on the hierarchical control scheme and the reinforcement learning theory, a robust controller is proposed without knowledge of each quadrotor dynamics, consisting of a distributed observer to estimate the position state of the leader, a position controller to achieve the desired formation, and an attitude controller to control the rotational motion. Simulation results on the multiquadrotor system confirm the effectiveness of the proposed model-free robust formation control method.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.3023711</identifier><identifier>PMID: 32970600</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Attitude control ; Computer Science ; Computer Science, Artificial Intelligence ; Computer Science, Hardware &amp; Architecture ; Computer Science, Theory &amp; Methods ; Control methods ; Control systems ; Cooperative control ; Dynamical systems ; Engineering ; Engineering, Electrical &amp; Electronic ; Formation control ; Heuristic algorithms ; Learning (artificial intelligence) ; Learning theory ; Nonlinear dynamical systems ; Nonlinear dynamics ; Nonlinear systems ; quadrotor system ; Reinforcement ; reinforcement learning (RL) ; Robust control ; Robustness ; Rotary wing aircraft ; Science &amp; Technology ; Technology ; underactuated system ; Vehicle dynamics</subject><ispartof>IEEE transaction on neural networks and learning systems, 2021-10, Vol.32 (10), p.4577-4587</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>64</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000704111000027</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c328t-8b75805c58caea65b86f097f74cb6bf58274e58affa969b1b8b5be8f4be544243</citedby><cites>FETCH-LOGICAL-c328t-8b75805c58caea65b86f097f74cb6bf58274e58affa969b1b8b5be8f4be544243</cites><orcidid>0000-0003-4074-1615 ; 0000-0002-0564-9736 ; 0000-0001-8365-8008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9205206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9205206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Wanbing</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><title>Robust Formation Control for Cooperative Underactuated Quadrotors via Reinforcement Learning</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE T NEUR NET LEAR</addtitle><description>In this article, the model-free robust formation control problem is addressed for cooperative underactuated quadrotors involving unknown nonlinear dynamics and disturbances. Based on the hierarchical control scheme and the reinforcement learning theory, a robust controller is proposed without knowledge of each quadrotor dynamics, consisting of a distributed observer to estimate the position state of the leader, a position controller to achieve the desired formation, and an attitude controller to control the rotational motion. Simulation results on the multiquadrotor system confirm the effectiveness of the proposed model-free robust formation control method.</description><subject>Attitude control</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Computer Science, Hardware &amp; Architecture</subject><subject>Computer Science, Theory &amp; Methods</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Cooperative control</subject><subject>Dynamical systems</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Formation control</subject><subject>Heuristic algorithms</subject><subject>Learning (artificial intelligence)</subject><subject>Learning theory</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>quadrotor system</subject><subject>Reinforcement</subject><subject>reinforcement learning (RL)</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Rotary wing aircraft</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>underactuated system</subject><subject>Vehicle dynamics</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkE1rVDEUhi9isaXtH9DNBTeCzJicm6-7lEurwlDpF7gQQpI5kZSZZExyK_57006p4Mp3k5PwPIfwdt1rSpaUkvHDzcXF6noJBMhyIDBISl90R0AFLGBQ6uXzLL8ddqel3JEWQbhg46vucIBRths56r5fJTuX2p-nvDU1pNhPKdacNr1Puc1ph7m932N_G9dtdHU2Fdf95WzWOdWUS38fTH-FITbB4RZj7Vdocgzxx0l34M2m4OnTedzdnp_dTJ8Xq6-fvkwfVws3gKoLZSVXhDuunEEjuFXCk1F6yZwV1nMFkiFXxnszitFSqyy3qDyzyBkDNhx37_Z7dzn9nLFUvQ3F4WZjIqa5aGBMtKhBNfTtP-hdmnNsv9PA5cgYAQmNgj3lciolo9e7HLYm_9aU6If69WP9-qF-_VR_k9Re-oU2-eICRofPYqtfEkab3AJyCvWx7inNsTb1_f-rjX6zpwPiX2oEwoGI4Q-UZaCW</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhao, Wanbing</creator><creator>Liu, Hao</creator><creator>Lewis, Frank L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4074-1615</orcidid><orcidid>https://orcid.org/0000-0002-0564-9736</orcidid><orcidid>https://orcid.org/0000-0001-8365-8008</orcidid></search><sort><creationdate>20211001</creationdate><title>Robust Formation Control for Cooperative Underactuated Quadrotors via Reinforcement Learning</title><author>Zhao, Wanbing ; Liu, Hao ; Lewis, Frank L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-8b75805c58caea65b86f097f74cb6bf58274e58affa969b1b8b5be8f4be544243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attitude control</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Computer Science, Hardware &amp; Architecture</topic><topic>Computer Science, Theory &amp; Methods</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Cooperative control</topic><topic>Dynamical systems</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Formation control</topic><topic>Heuristic algorithms</topic><topic>Learning (artificial intelligence)</topic><topic>Learning theory</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>quadrotor system</topic><topic>Reinforcement</topic><topic>reinforcement learning (RL)</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Rotary wing aircraft</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>underactuated system</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wanbing</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Wanbing</au><au>Liu, Hao</au><au>Lewis, Frank L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Formation Control for Cooperative Underactuated Quadrotors via Reinforcement Learning</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><stitle>IEEE T NEUR NET LEAR</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>32</volume><issue>10</issue><spage>4577</spage><epage>4587</epage><pages>4577-4587</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this article, the model-free robust formation control problem is addressed for cooperative underactuated quadrotors involving unknown nonlinear dynamics and disturbances. Based on the hierarchical control scheme and the reinforcement learning theory, a robust controller is proposed without knowledge of each quadrotor dynamics, consisting of a distributed observer to estimate the position state of the leader, a position controller to achieve the desired formation, and an attitude controller to control the rotational motion. Simulation results on the multiquadrotor system confirm the effectiveness of the proposed model-free robust formation control method.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><pmid>32970600</pmid><doi>10.1109/TNNLS.2020.3023711</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4074-1615</orcidid><orcidid>https://orcid.org/0000-0002-0564-9736</orcidid><orcidid>https://orcid.org/0000-0001-8365-8008</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2021-10, Vol.32 (10), p.4577-4587
issn 2162-237X
2162-2388
language eng
recordid cdi_webofscience_primary_000704111000027
source IEEE Electronic Library (IEL)
subjects Attitude control
Computer Science
Computer Science, Artificial Intelligence
Computer Science, Hardware & Architecture
Computer Science, Theory & Methods
Control methods
Control systems
Cooperative control
Dynamical systems
Engineering
Engineering, Electrical & Electronic
Formation control
Heuristic algorithms
Learning (artificial intelligence)
Learning theory
Nonlinear dynamical systems
Nonlinear dynamics
Nonlinear systems
quadrotor system
Reinforcement
reinforcement learning (RL)
Robust control
Robustness
Rotary wing aircraft
Science & Technology
Technology
underactuated system
Vehicle dynamics
title Robust Formation Control for Cooperative Underactuated Quadrotors via Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Formation%20Control%20for%20Cooperative%20Underactuated%20Quadrotors%20via%20Reinforcement%20Learning&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhao,%20Wanbing&rft.date=2021-10-01&rft.volume=32&rft.issue=10&rft.spage=4577&rft.epage=4587&rft.pages=4577-4587&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2020.3023711&rft_dat=%3Cproquest_RIE%3E2579440272%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579440272&rft_id=info:pmid/32970600&rft_ieee_id=9205206&rfr_iscdi=true