Revisited parasitic bipolar effect in FDSOI MOSFETs: Mechanism, gain extraction and circuit applications

•The PBE in FDSOI transistors is revisited including impact ionization and band-to-band tunneling.•The impact of PBE on the power consumption and performance of SRAM circuits is studied.•A strategy to counter PBE is proposed based on the power analysis of 6T SRAM with back-gate modulation. The paras...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid-state electronics 2021-11, Vol.185, p.108069, Article 108069
Hauptverfasser: Wang, G.Q., Liu, F.Y., Li, B., Luo, J.J., Huang, Y., Su, X.H., Han, Z.S., Zhang, J.J., Wang, Y.C., Wu, C.N., Zhang, J.M., Cristoloveanu, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108069
container_title Solid-state electronics
container_volume 185
creator Wang, G.Q.
Liu, F.Y.
Li, B.
Luo, J.J.
Huang, Y.
Su, X.H.
Han, Z.S.
Zhang, J.J.
Wang, Y.C.
Wu, C.N.
Zhang, J.M.
Cristoloveanu, S.
description •The PBE in FDSOI transistors is revisited including impact ionization and band-to-band tunneling.•The impact of PBE on the power consumption and performance of SRAM circuits is studied.•A strategy to counter PBE is proposed based on the power analysis of 6T SRAM with back-gate modulation. The parasitic bipolar effect in fully-depleted (FD) silicon-on-insulator (SOI) transistors is revisited including impact ionization and band-to-band tunneling. We tested the transfer characteristic curves for different temperature and drain voltage, combined with TCAD simulation to analyze the dominant mechanism of parasitic bipolar transistor (PBT). In addition, the influence of gate length on PBT has also been analyzed. The current gain β of the PBT was measured at different temperatures and drain voltages. Back-gate biasing was demonstrated to efficiently suppress the bipolar amplification. TCAD simulations showed that the parasitic bipolar effect enhanced the leakage power in circuits. A strategy to counter its effect is proposed based on the power analysis of 6 T SRAM cell with back-gate modulation.
doi_str_mv 10.1016/j.sse.2021.108069
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000701908200011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038110121001143</els_id><sourcerecordid>S0038110121001143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-2545a35195cd9c2f7be0d3ba3ea9c726d090c366f0645356ad0d351294dc0f023</originalsourceid><addsrcrecordid>eNqNkEFPwyAUx4nRxDn9AN64a-eDlrboyVSnS7YscXomFKhj2doGuqnfXmYXj8YTD97_9_L4IXRJYESApDerkfdmRIGScM8h5UdoQPKMRzQBdowGAHEekRA9RWferwCApgQGaPlidtbbzmjcSidDZRUubduspcOmqozqsK3x-GExn-DZfDF-fPW3eGbUUtbWb67xuwxt89k5qTrb1FjWGivr1NZ2WLbt2iq5f_fn6KSSa28uDucQvYVZxXM0nT9NivtppCjPuoiyhMmYEc6U5opWWWlAx6WMjeQqo6kGDipO0wrShMUslTq0GaE80QoqoPEQkX6uco33zlSidXYj3ZcgIPaqxEoEVWKvSvSqApP3zIcpm8ora2plfrngKgPCIaehIqSw3c-PimZbdwG9-j8a0nd92gQDO2ucOBDaumBa6Mb-seY3h7mSCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Revisited parasitic bipolar effect in FDSOI MOSFETs: Mechanism, gain extraction and circuit applications</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, G.Q. ; Liu, F.Y. ; Li, B. ; Luo, J.J. ; Huang, Y. ; Su, X.H. ; Han, Z.S. ; Zhang, J.J. ; Wang, Y.C. ; Wu, C.N. ; Zhang, J.M. ; Cristoloveanu, S.</creator><creatorcontrib>Wang, G.Q. ; Liu, F.Y. ; Li, B. ; Luo, J.J. ; Huang, Y. ; Su, X.H. ; Han, Z.S. ; Zhang, J.J. ; Wang, Y.C. ; Wu, C.N. ; Zhang, J.M. ; Cristoloveanu, S.</creatorcontrib><description>•The PBE in FDSOI transistors is revisited including impact ionization and band-to-band tunneling.•The impact of PBE on the power consumption and performance of SRAM circuits is studied.•A strategy to counter PBE is proposed based on the power analysis of 6T SRAM with back-gate modulation. The parasitic bipolar effect in fully-depleted (FD) silicon-on-insulator (SOI) transistors is revisited including impact ionization and band-to-band tunneling. We tested the transfer characteristic curves for different temperature and drain voltage, combined with TCAD simulation to analyze the dominant mechanism of parasitic bipolar transistor (PBT). In addition, the influence of gate length on PBT has also been analyzed. The current gain β of the PBT was measured at different temperatures and drain voltages. Back-gate biasing was demonstrated to efficiently suppress the bipolar amplification. TCAD simulations showed that the parasitic bipolar effect enhanced the leakage power in circuits. A strategy to counter its effect is proposed based on the power analysis of 6 T SRAM cell with back-gate modulation.</description><identifier>ISSN: 0038-1101</identifier><identifier>EISSN: 1879-2405</identifier><identifier>DOI: 10.1016/j.sse.2021.108069</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Back-gate ; Band-to-band tunneling ; Engineering ; Engineering, Electrical &amp; Electronic ; FD-SOI ; Impact ionization ; Leakage power ; Parasitic bipolar gain ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science &amp; Technology ; Technology</subject><ispartof>Solid-state electronics, 2021-11, Vol.185, p.108069, Article 108069</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000701908200011</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c297t-2545a35195cd9c2f7be0d3ba3ea9c726d090c366f0645356ad0d351294dc0f023</citedby><cites>FETCH-LOGICAL-c297t-2545a35195cd9c2f7be0d3ba3ea9c726d090c366f0645356ad0d351294dc0f023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sse.2021.108069$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Wang, G.Q.</creatorcontrib><creatorcontrib>Liu, F.Y.</creatorcontrib><creatorcontrib>Li, B.</creatorcontrib><creatorcontrib>Luo, J.J.</creatorcontrib><creatorcontrib>Huang, Y.</creatorcontrib><creatorcontrib>Su, X.H.</creatorcontrib><creatorcontrib>Han, Z.S.</creatorcontrib><creatorcontrib>Zhang, J.J.</creatorcontrib><creatorcontrib>Wang, Y.C.</creatorcontrib><creatorcontrib>Wu, C.N.</creatorcontrib><creatorcontrib>Zhang, J.M.</creatorcontrib><creatorcontrib>Cristoloveanu, S.</creatorcontrib><title>Revisited parasitic bipolar effect in FDSOI MOSFETs: Mechanism, gain extraction and circuit applications</title><title>Solid-state electronics</title><addtitle>SOLID STATE ELECTRON</addtitle><description>•The PBE in FDSOI transistors is revisited including impact ionization and band-to-band tunneling.•The impact of PBE on the power consumption and performance of SRAM circuits is studied.•A strategy to counter PBE is proposed based on the power analysis of 6T SRAM with back-gate modulation. The parasitic bipolar effect in fully-depleted (FD) silicon-on-insulator (SOI) transistors is revisited including impact ionization and band-to-band tunneling. We tested the transfer characteristic curves for different temperature and drain voltage, combined with TCAD simulation to analyze the dominant mechanism of parasitic bipolar transistor (PBT). In addition, the influence of gate length on PBT has also been analyzed. The current gain β of the PBT was measured at different temperatures and drain voltages. Back-gate biasing was demonstrated to efficiently suppress the bipolar amplification. TCAD simulations showed that the parasitic bipolar effect enhanced the leakage power in circuits. A strategy to counter its effect is proposed based on the power analysis of 6 T SRAM cell with back-gate modulation.</description><subject>Back-gate</subject><subject>Band-to-band tunneling</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>FD-SOI</subject><subject>Impact ionization</subject><subject>Leakage power</subject><subject>Parasitic bipolar gain</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><issn>0038-1101</issn><issn>1879-2405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEFPwyAUx4nRxDn9AN64a-eDlrboyVSnS7YscXomFKhj2doGuqnfXmYXj8YTD97_9_L4IXRJYESApDerkfdmRIGScM8h5UdoQPKMRzQBdowGAHEekRA9RWferwCApgQGaPlidtbbzmjcSidDZRUubduspcOmqozqsK3x-GExn-DZfDF-fPW3eGbUUtbWb67xuwxt89k5qTrb1FjWGivr1NZ2WLbt2iq5f_fn6KSSa28uDucQvYVZxXM0nT9NivtppCjPuoiyhMmYEc6U5opWWWlAx6WMjeQqo6kGDipO0wrShMUslTq0GaE80QoqoPEQkX6uco33zlSidXYj3ZcgIPaqxEoEVWKvSvSqApP3zIcpm8ora2plfrngKgPCIaehIqSw3c-PimZbdwG9-j8a0nd92gQDO2ucOBDaumBa6Mb-seY3h7mSCQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Wang, G.Q.</creator><creator>Liu, F.Y.</creator><creator>Li, B.</creator><creator>Luo, J.J.</creator><creator>Huang, Y.</creator><creator>Su, X.H.</creator><creator>Han, Z.S.</creator><creator>Zhang, J.J.</creator><creator>Wang, Y.C.</creator><creator>Wu, C.N.</creator><creator>Zhang, J.M.</creator><creator>Cristoloveanu, S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202111</creationdate><title>Revisited parasitic bipolar effect in FDSOI MOSFETs: Mechanism, gain extraction and circuit applications</title><author>Wang, G.Q. ; Liu, F.Y. ; Li, B. ; Luo, J.J. ; Huang, Y. ; Su, X.H. ; Han, Z.S. ; Zhang, J.J. ; Wang, Y.C. ; Wu, C.N. ; Zhang, J.M. ; Cristoloveanu, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-2545a35195cd9c2f7be0d3ba3ea9c726d090c366f0645356ad0d351294dc0f023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Back-gate</topic><topic>Band-to-band tunneling</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>FD-SOI</topic><topic>Impact ionization</topic><topic>Leakage power</topic><topic>Parasitic bipolar gain</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, G.Q.</creatorcontrib><creatorcontrib>Liu, F.Y.</creatorcontrib><creatorcontrib>Li, B.</creatorcontrib><creatorcontrib>Luo, J.J.</creatorcontrib><creatorcontrib>Huang, Y.</creatorcontrib><creatorcontrib>Su, X.H.</creatorcontrib><creatorcontrib>Han, Z.S.</creatorcontrib><creatorcontrib>Zhang, J.J.</creatorcontrib><creatorcontrib>Wang, Y.C.</creatorcontrib><creatorcontrib>Wu, C.N.</creatorcontrib><creatorcontrib>Zhang, J.M.</creatorcontrib><creatorcontrib>Cristoloveanu, S.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Solid-state electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, G.Q.</au><au>Liu, F.Y.</au><au>Li, B.</au><au>Luo, J.J.</au><au>Huang, Y.</au><au>Su, X.H.</au><au>Han, Z.S.</au><au>Zhang, J.J.</au><au>Wang, Y.C.</au><au>Wu, C.N.</au><au>Zhang, J.M.</au><au>Cristoloveanu, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisited parasitic bipolar effect in FDSOI MOSFETs: Mechanism, gain extraction and circuit applications</atitle><jtitle>Solid-state electronics</jtitle><stitle>SOLID STATE ELECTRON</stitle><date>2021-11</date><risdate>2021</risdate><volume>185</volume><spage>108069</spage><pages>108069-</pages><artnum>108069</artnum><issn>0038-1101</issn><eissn>1879-2405</eissn><abstract>•The PBE in FDSOI transistors is revisited including impact ionization and band-to-band tunneling.•The impact of PBE on the power consumption and performance of SRAM circuits is studied.•A strategy to counter PBE is proposed based on the power analysis of 6T SRAM with back-gate modulation. The parasitic bipolar effect in fully-depleted (FD) silicon-on-insulator (SOI) transistors is revisited including impact ionization and band-to-band tunneling. We tested the transfer characteristic curves for different temperature and drain voltage, combined with TCAD simulation to analyze the dominant mechanism of parasitic bipolar transistor (PBT). In addition, the influence of gate length on PBT has also been analyzed. The current gain β of the PBT was measured at different temperatures and drain voltages. Back-gate biasing was demonstrated to efficiently suppress the bipolar amplification. TCAD simulations showed that the parasitic bipolar effect enhanced the leakage power in circuits. A strategy to counter its effect is proposed based on the power analysis of 6 T SRAM cell with back-gate modulation.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.sse.2021.108069</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-1101
ispartof Solid-state electronics, 2021-11, Vol.185, p.108069, Article 108069
issn 0038-1101
1879-2405
language eng
recordid cdi_webofscience_primary_000701908200011
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Back-gate
Band-to-band tunneling
Engineering
Engineering, Electrical & Electronic
FD-SOI
Impact ionization
Leakage power
Parasitic bipolar gain
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Science & Technology
Technology
title Revisited parasitic bipolar effect in FDSOI MOSFETs: Mechanism, gain extraction and circuit applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisited%20parasitic%20bipolar%20effect%20in%20FDSOI%20MOSFETs:%20Mechanism,%20gain%20extraction%20and%20circuit%20applications&rft.jtitle=Solid-state%20electronics&rft.au=Wang,%20G.Q.&rft.date=2021-11&rft.volume=185&rft.spage=108069&rft.pages=108069-&rft.artnum=108069&rft.issn=0038-1101&rft.eissn=1879-2405&rft_id=info:doi/10.1016/j.sse.2021.108069&rft_dat=%3Celsevier_webof%3ES0038110121001143%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0038110121001143&rfr_iscdi=true