Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1/M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide
Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats....
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2021-12, Vol.58 (12), p.6552-6576 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6576 |
---|---|
container_issue | 12 |
container_start_page | 6552 |
container_title | Molecular neurobiology |
container_volume | 58 |
creator | Zhou, Qiuping Lin, Lanfen Li, Haiyan Wang, Huifang Jiang, Shuqi Huang, Peixian Lin, Qiongyu Chen, Xuan Deng, Yiyu |
description | Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be related to the modulation of microglial polarization from M1 phenotype to M2 through the JAK2/STAT3/telomerase pathway. We reported here that indeed melatonin not only can it reduce the neurobehavioral disturbances in LPS-injected rats, but it can also dampen microglia-mediated inflammation. Thus, in LPS + melatonin group, the expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with telomerase reverse transcriptase or melatonin receptor 1(MT1). In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. Melatonin can improve hypomyelination which was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased the expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the effect of melatonin on LPS-treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization from M1 to M2 phenotype that would ultimately contribute to the attenuation of PWMD. |
doi_str_mv | 10.1007/s12035-021-02568-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000701639500003CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605425378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-509277a40dc66ec708898d40e21bb4c74ba38567d0b47816b755f74b2ef2b1bf3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEokvhBTggS1yQUKjtxLFzQVqtCi3swqosZ8txnF1Xjp3aybbh-Xgw3KYsfw6Ig2Vr5jefZ-wvSZ4j-AZBSE8CwjAjKcQoLlKwlD5IZoiQMkWI4YfJDLIyS2mRs6PkSQiXEGKMIH2cHGU5YSTDbJZ8Xykjeme1BReqHqQK4JMavNO2MaJtRa-dBcLW4LztvNvH9PzGWWHA2di5dlRG24mpRrBy9RDFtN2CFTpZYbDS0rut0QKsnRFef5vQfQx8mH_E6ZfNfJOlG2Vcq7wICqxFv7sWI4jdrF3oo3S86UL0AZzedC6oGvQOLHXnOmfGIKTcRdVaPU0eNcIE9ex-P06-vjvdLM7S5ef354v5MpU5zfuUwBJTKnJYy6JQkkLGSlbnUGFUVbmkeSUyRgpawyqnDBUVJaSJUawaXKGqyY6Tt5NuN1StqqWyvReGd163wo_cCc3_zFi941u356zISpKTKPDqXsC7q0GFnrc6SGWMsMoNgWNCKcVliYqIvvwLvXSDjy8fqQKSHJOMskjhiYoPHYJXzaEZBPmtSfhkEh5Nwu9MwmksevH7GIeSn66IAJuAa1W5JkitrFQHDEZZiG4niieYLXR_960LN9g-lr7-_9JIZxMdImG3yv8a8h_9_wCBQexp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605425378</pqid></control><display><type>article</type><title>Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1/M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Zhou, Qiuping ; Lin, Lanfen ; Li, Haiyan ; Wang, Huifang ; Jiang, Shuqi ; Huang, Peixian ; Lin, Qiongyu ; Chen, Xuan ; Deng, Yiyu</creator><creatorcontrib>Zhou, Qiuping ; Lin, Lanfen ; Li, Haiyan ; Wang, Huifang ; Jiang, Shuqi ; Huang, Peixian ; Lin, Qiongyu ; Chen, Xuan ; Deng, Yiyu</creatorcontrib><description>Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be related to the modulation of microglial polarization from M1 phenotype to M2 through the JAK2/STAT3/telomerase pathway. We reported here that indeed melatonin not only can it reduce the neurobehavioral disturbances in LPS-injected rats, but it can also dampen microglia-mediated inflammation. Thus, in LPS + melatonin group, the expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with telomerase reverse transcriptase or melatonin receptor 1(MT1). In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. Melatonin can improve hypomyelination which was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased the expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the effect of melatonin on LPS-treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization from M1 to M2 phenotype that would ultimately contribute to the attenuation of PWMD.</description><identifier>ISSN: 0893-7648</identifier><identifier>ISSN: 1559-1182</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-021-02568-7</identifier><identifier>PMID: 34585328</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Anti-Inflammatory Agents - pharmacology ; Anti-Inflammatory Agents - therapeutic use ; Axons - drug effects ; Axons - metabolism ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Polarity - drug effects ; Corpus callosum ; Electron microscopy ; Genotype & phenotype ; Inflammation ; Janus kinase 2 ; Janus Kinase 2 - metabolism ; Life Sciences & Biomedicine ; Lipopolysaccharides ; Lipopolysaccharides - pharmacology ; Melatonin ; Melatonin - pharmacology ; Melatonin - therapeutic use ; Microglia ; Microglia - drug effects ; Microglia - metabolism ; Myelin ; Myelin Sheath - drug effects ; Myelin Sheath - metabolism ; Neurobiology ; Neuroinflammatory Diseases - drug therapy ; Neuroinflammatory Diseases - metabolism ; Neurology ; Neuroprotective Agents - pharmacology ; Neuroprotective Agents - therapeutic use ; Neurosciences ; Neurosciences & Neurology ; Phenotypes ; Polarization ; Rats ; RNA-directed DNA polymerase ; Science & Technology ; Signal Transduction - drug effects ; Stat3 protein ; STAT3 Transcription Factor - metabolism ; Substantia alba ; Telomerase ; Telomerase - metabolism ; Telomerase reverse transcriptase ; White Matter - drug effects ; White Matter - metabolism</subject><ispartof>Molecular neurobiology, 2021-12, Vol.58 (12), p.6552-6576</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>44</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000701639500003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-509277a40dc66ec708898d40e21bb4c74ba38567d0b47816b755f74b2ef2b1bf3</citedby><cites>FETCH-LOGICAL-c474t-509277a40dc66ec708898d40e21bb4c74ba38567d0b47816b755f74b2ef2b1bf3</cites><orcidid>0000-0002-0459-7399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-021-02568-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-021-02568-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,39263,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34585328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Qiuping</creatorcontrib><creatorcontrib>Lin, Lanfen</creatorcontrib><creatorcontrib>Li, Haiyan</creatorcontrib><creatorcontrib>Wang, Huifang</creatorcontrib><creatorcontrib>Jiang, Shuqi</creatorcontrib><creatorcontrib>Huang, Peixian</creatorcontrib><creatorcontrib>Lin, Qiongyu</creatorcontrib><creatorcontrib>Chen, Xuan</creatorcontrib><creatorcontrib>Deng, Yiyu</creatorcontrib><title>Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1/M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>MOL NEUROBIOL</addtitle><addtitle>Mol Neurobiol</addtitle><description>Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be related to the modulation of microglial polarization from M1 phenotype to M2 through the JAK2/STAT3/telomerase pathway. We reported here that indeed melatonin not only can it reduce the neurobehavioral disturbances in LPS-injected rats, but it can also dampen microglia-mediated inflammation. Thus, in LPS + melatonin group, the expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with telomerase reverse transcriptase or melatonin receptor 1(MT1). In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. Melatonin can improve hypomyelination which was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased the expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the effect of melatonin on LPS-treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization from M1 to M2 phenotype that would ultimately contribute to the attenuation of PWMD.</description><subject>Animals</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Anti-Inflammatory Agents - therapeutic use</subject><subject>Axons - drug effects</subject><subject>Axons - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Polarity - drug effects</subject><subject>Corpus callosum</subject><subject>Electron microscopy</subject><subject>Genotype & phenotype</subject><subject>Inflammation</subject><subject>Janus kinase 2</subject><subject>Janus Kinase 2 - metabolism</subject><subject>Life Sciences & Biomedicine</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Melatonin</subject><subject>Melatonin - pharmacology</subject><subject>Melatonin - therapeutic use</subject><subject>Microglia</subject><subject>Microglia - drug effects</subject><subject>Microglia - metabolism</subject><subject>Myelin</subject><subject>Myelin Sheath - drug effects</subject><subject>Myelin Sheath - metabolism</subject><subject>Neurobiology</subject><subject>Neuroinflammatory Diseases - drug therapy</subject><subject>Neuroinflammatory Diseases - metabolism</subject><subject>Neurology</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Neuroprotective Agents - therapeutic use</subject><subject>Neurosciences</subject><subject>Neurosciences & Neurology</subject><subject>Phenotypes</subject><subject>Polarization</subject><subject>Rats</subject><subject>RNA-directed DNA polymerase</subject><subject>Science & Technology</subject><subject>Signal Transduction - drug effects</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Substantia alba</subject><subject>Telomerase</subject><subject>Telomerase - metabolism</subject><subject>Telomerase reverse transcriptase</subject><subject>White Matter - drug effects</subject><subject>White Matter - metabolism</subject><issn>0893-7648</issn><issn>1559-1182</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks9u1DAQxiMEokvhBTggS1yQUKjtxLFzQVqtCi3swqosZ8txnF1Xjp3aybbh-Xgw3KYsfw6Ig2Vr5jefZ-wvSZ4j-AZBSE8CwjAjKcQoLlKwlD5IZoiQMkWI4YfJDLIyS2mRs6PkSQiXEGKMIH2cHGU5YSTDbJZ8Xykjeme1BReqHqQK4JMavNO2MaJtRa-dBcLW4LztvNvH9PzGWWHA2di5dlRG24mpRrBy9RDFtN2CFTpZYbDS0rut0QKsnRFef5vQfQx8mH_E6ZfNfJOlG2Vcq7wICqxFv7sWI4jdrF3oo3S86UL0AZzedC6oGvQOLHXnOmfGIKTcRdVaPU0eNcIE9ex-P06-vjvdLM7S5ef354v5MpU5zfuUwBJTKnJYy6JQkkLGSlbnUGFUVbmkeSUyRgpawyqnDBUVJaSJUawaXKGqyY6Tt5NuN1StqqWyvReGd163wo_cCc3_zFi941u356zISpKTKPDqXsC7q0GFnrc6SGWMsMoNgWNCKcVliYqIvvwLvXSDjy8fqQKSHJOMskjhiYoPHYJXzaEZBPmtSfhkEh5Nwu9MwmksevH7GIeSn66IAJuAa1W5JkitrFQHDEZZiG4niieYLXR_960LN9g-lr7-_9JIZxMdImG3yv8a8h_9_wCBQexp</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Zhou, Qiuping</creator><creator>Lin, Lanfen</creator><creator>Li, Haiyan</creator><creator>Wang, Huifang</creator><creator>Jiang, Shuqi</creator><creator>Huang, Peixian</creator><creator>Lin, Qiongyu</creator><creator>Chen, Xuan</creator><creator>Deng, Yiyu</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0459-7399</orcidid></search><sort><creationdate>20211201</creationdate><title>Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1/M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide</title><author>Zhou, Qiuping ; Lin, Lanfen ; Li, Haiyan ; Wang, Huifang ; Jiang, Shuqi ; Huang, Peixian ; Lin, Qiongyu ; Chen, Xuan ; Deng, Yiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-509277a40dc66ec708898d40e21bb4c74ba38567d0b47816b755f74b2ef2b1bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Anti-Inflammatory Agents - therapeutic use</topic><topic>Axons - drug effects</topic><topic>Axons - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Polarity - drug effects</topic><topic>Corpus callosum</topic><topic>Electron microscopy</topic><topic>Genotype & phenotype</topic><topic>Inflammation</topic><topic>Janus kinase 2</topic><topic>Janus Kinase 2 - metabolism</topic><topic>Life Sciences & Biomedicine</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Melatonin</topic><topic>Melatonin - pharmacology</topic><topic>Melatonin - therapeutic use</topic><topic>Microglia</topic><topic>Microglia - drug effects</topic><topic>Microglia - metabolism</topic><topic>Myelin</topic><topic>Myelin Sheath - drug effects</topic><topic>Myelin Sheath - metabolism</topic><topic>Neurobiology</topic><topic>Neuroinflammatory Diseases - drug therapy</topic><topic>Neuroinflammatory Diseases - metabolism</topic><topic>Neurology</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Neuroprotective Agents - therapeutic use</topic><topic>Neurosciences</topic><topic>Neurosciences & Neurology</topic><topic>Phenotypes</topic><topic>Polarization</topic><topic>Rats</topic><topic>RNA-directed DNA polymerase</topic><topic>Science & Technology</topic><topic>Signal Transduction - drug effects</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Substantia alba</topic><topic>Telomerase</topic><topic>Telomerase - metabolism</topic><topic>Telomerase reverse transcriptase</topic><topic>White Matter - drug effects</topic><topic>White Matter - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Qiuping</creatorcontrib><creatorcontrib>Lin, Lanfen</creatorcontrib><creatorcontrib>Li, Haiyan</creatorcontrib><creatorcontrib>Wang, Huifang</creatorcontrib><creatorcontrib>Jiang, Shuqi</creatorcontrib><creatorcontrib>Huang, Peixian</creatorcontrib><creatorcontrib>Lin, Qiongyu</creatorcontrib><creatorcontrib>Chen, Xuan</creatorcontrib><creatorcontrib>Deng, Yiyu</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Qiuping</au><au>Lin, Lanfen</au><au>Li, Haiyan</au><au>Wang, Huifang</au><au>Jiang, Shuqi</au><au>Huang, Peixian</au><au>Lin, Qiongyu</au><au>Chen, Xuan</au><au>Deng, Yiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1/M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><stitle>MOL NEUROBIOL</stitle><addtitle>Mol Neurobiol</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>58</volume><issue>12</issue><spage>6552</spage><epage>6576</epage><pages>6552-6576</pages><issn>0893-7648</issn><issn>1559-1182</issn><eissn>1559-1182</eissn><abstract>Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be related to the modulation of microglial polarization from M1 phenotype to M2 through the JAK2/STAT3/telomerase pathway. We reported here that indeed melatonin not only can it reduce the neurobehavioral disturbances in LPS-injected rats, but it can also dampen microglia-mediated inflammation. Thus, in LPS + melatonin group, the expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with telomerase reverse transcriptase or melatonin receptor 1(MT1). In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. Melatonin can improve hypomyelination which was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased the expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the effect of melatonin on LPS-treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization from M1 to M2 phenotype that would ultimately contribute to the attenuation of PWMD.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34585328</pmid><doi>10.1007/s12035-021-02568-7</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-0459-7399</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2021-12, Vol.58 (12), p.6552-6576 |
issn | 0893-7648 1559-1182 1559-1182 |
language | eng |
recordid | cdi_webofscience_primary_000701639500003CitationCount |
source | MEDLINE; SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Animals Anti-Inflammatory Agents - pharmacology Anti-Inflammatory Agents - therapeutic use Axons - drug effects Axons - metabolism Biomedical and Life Sciences Biomedicine Cell Biology Cell Polarity - drug effects Corpus callosum Electron microscopy Genotype & phenotype Inflammation Janus kinase 2 Janus Kinase 2 - metabolism Life Sciences & Biomedicine Lipopolysaccharides Lipopolysaccharides - pharmacology Melatonin Melatonin - pharmacology Melatonin - therapeutic use Microglia Microglia - drug effects Microglia - metabolism Myelin Myelin Sheath - drug effects Myelin Sheath - metabolism Neurobiology Neuroinflammatory Diseases - drug therapy Neuroinflammatory Diseases - metabolism Neurology Neuroprotective Agents - pharmacology Neuroprotective Agents - therapeutic use Neurosciences Neurosciences & Neurology Phenotypes Polarization Rats RNA-directed DNA polymerase Science & Technology Signal Transduction - drug effects Stat3 protein STAT3 Transcription Factor - metabolism Substantia alba Telomerase Telomerase - metabolism Telomerase reverse transcriptase White Matter - drug effects White Matter - metabolism |
title | Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1/M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melatonin%20Reduces%20Neuroinflammation%20and%20Improves%20Axonal%20Hypomyelination%20by%20Modulating%20M1/M2%20Microglia%20Polarization%20via%20JAK2-STAT3-Telomerase%20Pathway%20in%20Postnatal%20Rats%20Exposed%20to%20Lipopolysaccharide&rft.jtitle=Molecular%20neurobiology&rft.au=Zhou,%20Qiuping&rft.date=2021-12-01&rft.volume=58&rft.issue=12&rft.spage=6552&rft.epage=6576&rft.pages=6552-6576&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-021-02568-7&rft_dat=%3Cproquest_webof%3E2605425378%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605425378&rft_id=info:pmid/34585328&rfr_iscdi=true |