Analysis of Thermoelectric Energy Harvesting with Graphene Aerogel-Supported Form-Stable Phase Change Materials
Graphene aerogel-supported phase change material (PCM) composites sustain the initial solid state without any leakage problem when they are melted. The high portion of pure PCM in the composite can absorb or release a relatively large amount of heat during heating and cooling. In this study, these f...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2021-08, Vol.11 (9), p.2192 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 2192 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 11 |
creator | Yu, Chengbin Song, Young Seok |
description | Graphene aerogel-supported phase change material (PCM) composites sustain the initial solid state without any leakage problem when they are melted. The high portion of pure PCM in the composite can absorb or release a relatively large amount of heat during heating and cooling. In this study, these form-stable PCM composites were used to construct a thermoelectric power generator for collecting electrical energy under the external temperature change. The Seebeck effect and the temperature difference between the two sides of the thermal device were applied for thermoelectric energy harvesting. Two different PCM composites were used to collect the thermoelectric energy harvesting due to the different phase transition field in the heating and cooling processes. The graphene nano-platelet (GNP) filler was embedded to increase the thermal conductivities of PCM composites. Maximum output current was investigated by utilizing these two PCM composites with different GNP filler ratios. The thermoelectric energy harvesting efficiencies during heating and cooling were 62.26% and 39.96%, respectively. In addition, a finite element method (FEM) numerical analysis was conducted to model the output profiles. |
doi_str_mv | 10.3390/nano11092192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e123c79ab4cf4b8fa7a7615ac4905bf9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e123c79ab4cf4b8fa7a7615ac4905bf9</doaj_id><sourcerecordid>2576400071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-3383f98e72a03fa7a6583764893d873ed101c99ef29f3634d1398b46cae2ccb33</originalsourceid><addsrcrecordid>eNpdkktr3DAQgE1paUKaW3-AoJce6layJEu6FJYlL0hpIelZjOXxY7ElV7IT9t_Xmw0lqS4jNB_fiJnJso-MfuXc0G8efGCMmoKZ4k12WlBlcmEMe_vifpKdp7Sj6zGMa8nfZydcSKUl1adZ2HgY9qlPJDTkvsM4BhzQzbF35MJjbPfkGuIDprn3LXns545cRZg69Eg2GEOLQ363TFOIM9bkMsQxv5uhGpD86iAh2XbgWyQ_YMbYw5A-ZO-aNeD5czzLfl9e3G-v89ufVzfbzW3uhJRzzrnmjdGoCqC8AQWl1FyVQhtea8WxZpQ5Y7ApTMNLLmrGja5E6QAL5yrOz7Kbo7cOsLNT7EeIexugt08PIbYW4ty7AS2ygjtloBKuEZU-VFMlk-CEobJqzOr6fnRNSzVi7dDPEYZX0tcZ33e2DQ9WC0Wppqvg87Mghj_L2ks79snhMIDHsCRbSKWEpKU8oJ_-Q3dhieuMnqhSrFNUbKW-HCkXQ0oRm3-fYdQeFsO-XAz-FxmKquw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576400071</pqid></control><display><type>article</type><title>Analysis of Thermoelectric Energy Harvesting with Graphene Aerogel-Supported Form-Stable Phase Change Materials</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yu, Chengbin ; Song, Young Seok</creator><creatorcontrib>Yu, Chengbin ; Song, Young Seok</creatorcontrib><description>Graphene aerogel-supported phase change material (PCM) composites sustain the initial solid state without any leakage problem when they are melted. The high portion of pure PCM in the composite can absorb or release a relatively large amount of heat during heating and cooling. In this study, these form-stable PCM composites were used to construct a thermoelectric power generator for collecting electrical energy under the external temperature change. The Seebeck effect and the temperature difference between the two sides of the thermal device were applied for thermoelectric energy harvesting. Two different PCM composites were used to collect the thermoelectric energy harvesting due to the different phase transition field in the heating and cooling processes. The graphene nano-platelet (GNP) filler was embedded to increase the thermal conductivities of PCM composites. Maximum output current was investigated by utilizing these two PCM composites with different GNP filler ratios. The thermoelectric energy harvesting efficiencies during heating and cooling were 62.26% and 39.96%, respectively. In addition, a finite element method (FEM) numerical analysis was conducted to model the output profiles.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano11092192</identifier><identifier>PMID: 34578508</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerogels ; Alternative energy sources ; Aqueous solutions ; Carbon ; Clean technology ; Composite materials ; Cooling ; Efficiency ; Energy ; Energy harvesting ; Energy storage ; Fillers ; Finite element method ; Fourier transforms ; Graphene ; Graphite ; Heat conductivity ; Heating ; Hydrochloric acid ; Numerical analysis ; phase change material ; Phase change materials ; Phase transitions ; Polyethylene glycol ; Potassium ; Ratios ; Renewable resources ; Seebeck effect ; Semiconductors ; Solids ; Temperature gradients ; Thermal energy ; thermoelectric energy harvesting ; Thermoelectricity</subject><ispartof>Nanomaterials (Basel, Switzerland), 2021-08, Vol.11 (9), p.2192</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-3383f98e72a03fa7a6583764893d873ed101c99ef29f3634d1398b46cae2ccb33</citedby><cites>FETCH-LOGICAL-c455t-3383f98e72a03fa7a6583764893d873ed101c99ef29f3634d1398b46cae2ccb33</cites><orcidid>0000-0002-4444-8101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470080/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470080/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Yu, Chengbin</creatorcontrib><creatorcontrib>Song, Young Seok</creatorcontrib><title>Analysis of Thermoelectric Energy Harvesting with Graphene Aerogel-Supported Form-Stable Phase Change Materials</title><title>Nanomaterials (Basel, Switzerland)</title><description>Graphene aerogel-supported phase change material (PCM) composites sustain the initial solid state without any leakage problem when they are melted. The high portion of pure PCM in the composite can absorb or release a relatively large amount of heat during heating and cooling. In this study, these form-stable PCM composites were used to construct a thermoelectric power generator for collecting electrical energy under the external temperature change. The Seebeck effect and the temperature difference between the two sides of the thermal device were applied for thermoelectric energy harvesting. Two different PCM composites were used to collect the thermoelectric energy harvesting due to the different phase transition field in the heating and cooling processes. The graphene nano-platelet (GNP) filler was embedded to increase the thermal conductivities of PCM composites. Maximum output current was investigated by utilizing these two PCM composites with different GNP filler ratios. The thermoelectric energy harvesting efficiencies during heating and cooling were 62.26% and 39.96%, respectively. In addition, a finite element method (FEM) numerical analysis was conducted to model the output profiles.</description><subject>Aerogels</subject><subject>Alternative energy sources</subject><subject>Aqueous solutions</subject><subject>Carbon</subject><subject>Clean technology</subject><subject>Composite materials</subject><subject>Cooling</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Fillers</subject><subject>Finite element method</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Heat conductivity</subject><subject>Heating</subject><subject>Hydrochloric acid</subject><subject>Numerical analysis</subject><subject>phase change material</subject><subject>Phase change materials</subject><subject>Phase transitions</subject><subject>Polyethylene glycol</subject><subject>Potassium</subject><subject>Ratios</subject><subject>Renewable resources</subject><subject>Seebeck effect</subject><subject>Semiconductors</subject><subject>Solids</subject><subject>Temperature gradients</subject><subject>Thermal energy</subject><subject>thermoelectric energy harvesting</subject><subject>Thermoelectricity</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktr3DAQgE1paUKaW3-AoJce6layJEu6FJYlL0hpIelZjOXxY7ElV7IT9t_Xmw0lqS4jNB_fiJnJso-MfuXc0G8efGCMmoKZ4k12WlBlcmEMe_vifpKdp7Sj6zGMa8nfZydcSKUl1adZ2HgY9qlPJDTkvsM4BhzQzbF35MJjbPfkGuIDprn3LXns545cRZg69Eg2GEOLQ363TFOIM9bkMsQxv5uhGpD86iAh2XbgWyQ_YMbYw5A-ZO-aNeD5czzLfl9e3G-v89ufVzfbzW3uhJRzzrnmjdGoCqC8AQWl1FyVQhtea8WxZpQ5Y7ApTMNLLmrGja5E6QAL5yrOz7Kbo7cOsLNT7EeIexugt08PIbYW4ty7AS2ygjtloBKuEZU-VFMlk-CEobJqzOr6fnRNSzVi7dDPEYZX0tcZ33e2DQ9WC0Wppqvg87Mghj_L2ks79snhMIDHsCRbSKWEpKU8oJ_-Q3dhieuMnqhSrFNUbKW-HCkXQ0oRm3-fYdQeFsO-XAz-FxmKquw</recordid><startdate>20210826</startdate><enddate>20210826</enddate><creator>Yu, Chengbin</creator><creator>Song, Young Seok</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4444-8101</orcidid></search><sort><creationdate>20210826</creationdate><title>Analysis of Thermoelectric Energy Harvesting with Graphene Aerogel-Supported Form-Stable Phase Change Materials</title><author>Yu, Chengbin ; Song, Young Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-3383f98e72a03fa7a6583764893d873ed101c99ef29f3634d1398b46cae2ccb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerogels</topic><topic>Alternative energy sources</topic><topic>Aqueous solutions</topic><topic>Carbon</topic><topic>Clean technology</topic><topic>Composite materials</topic><topic>Cooling</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Fillers</topic><topic>Finite element method</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Heat conductivity</topic><topic>Heating</topic><topic>Hydrochloric acid</topic><topic>Numerical analysis</topic><topic>phase change material</topic><topic>Phase change materials</topic><topic>Phase transitions</topic><topic>Polyethylene glycol</topic><topic>Potassium</topic><topic>Ratios</topic><topic>Renewable resources</topic><topic>Seebeck effect</topic><topic>Semiconductors</topic><topic>Solids</topic><topic>Temperature gradients</topic><topic>Thermal energy</topic><topic>thermoelectric energy harvesting</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Chengbin</creatorcontrib><creatorcontrib>Song, Young Seok</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Chengbin</au><au>Song, Young Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Thermoelectric Energy Harvesting with Graphene Aerogel-Supported Form-Stable Phase Change Materials</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2021-08-26</date><risdate>2021</risdate><volume>11</volume><issue>9</issue><spage>2192</spage><pages>2192-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Graphene aerogel-supported phase change material (PCM) composites sustain the initial solid state without any leakage problem when they are melted. The high portion of pure PCM in the composite can absorb or release a relatively large amount of heat during heating and cooling. In this study, these form-stable PCM composites were used to construct a thermoelectric power generator for collecting electrical energy under the external temperature change. The Seebeck effect and the temperature difference between the two sides of the thermal device were applied for thermoelectric energy harvesting. Two different PCM composites were used to collect the thermoelectric energy harvesting due to the different phase transition field in the heating and cooling processes. The graphene nano-platelet (GNP) filler was embedded to increase the thermal conductivities of PCM composites. Maximum output current was investigated by utilizing these two PCM composites with different GNP filler ratios. The thermoelectric energy harvesting efficiencies during heating and cooling were 62.26% and 39.96%, respectively. In addition, a finite element method (FEM) numerical analysis was conducted to model the output profiles.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34578508</pmid><doi>10.3390/nano11092192</doi><orcidid>https://orcid.org/0000-0002-4444-8101</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2021-08, Vol.11 (9), p.2192 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e123c79ab4cf4b8fa7a7615ac4905bf9 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Aerogels Alternative energy sources Aqueous solutions Carbon Clean technology Composite materials Cooling Efficiency Energy Energy harvesting Energy storage Fillers Finite element method Fourier transforms Graphene Graphite Heat conductivity Heating Hydrochloric acid Numerical analysis phase change material Phase change materials Phase transitions Polyethylene glycol Potassium Ratios Renewable resources Seebeck effect Semiconductors Solids Temperature gradients Thermal energy thermoelectric energy harvesting Thermoelectricity |
title | Analysis of Thermoelectric Energy Harvesting with Graphene Aerogel-Supported Form-Stable Phase Change Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Thermoelectric%20Energy%20Harvesting%20with%20Graphene%20Aerogel-Supported%20Form-Stable%20Phase%20Change%20Materials&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Yu,%20Chengbin&rft.date=2021-08-26&rft.volume=11&rft.issue=9&rft.spage=2192&rft.pages=2192-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano11092192&rft_dat=%3Cproquest_doaj_%3E2576400071%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576400071&rft_id=info:pmid/34578508&rft_doaj_id=oai_doaj_org_article_e123c79ab4cf4b8fa7a7615ac4905bf9&rfr_iscdi=true |