PTX-3 Secreted by Intra-Articular-Injected SMUP-Cells Reduces Pain in an Osteoarthritis Rat Model

Mesenchymal stem cells (MSCs) are accessible, abundantly available, and capable of regenerating; they have the potential to be developed as therapeutic agents for diseases. However, concerns remain in their further application. In this study, we developed a SMall cell+Ultra Potent+Scale UP cell (SMU...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cells (Basel, Switzerland) Switzerland), 2021-09, Vol.10 (9), p.2420
Hauptverfasser: Lee, Minju, Kim, Gee-Hye, Kim, Miyeon, Seo, Ji Min, Kim, Yu Mi, Seon, Mi Ra, Um, Soyoun, Choi, Soo Jin, Oh, Wonil, Song, Bo Ram, Jin, Hye Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mesenchymal stem cells (MSCs) are accessible, abundantly available, and capable of regenerating; they have the potential to be developed as therapeutic agents for diseases. However, concerns remain in their further application. In this study, we developed a SMall cell+Ultra Potent+Scale UP cell (SMUP-Cell) platform to improve whole-cell processing, including manufacturing bioreactors and xeno-free solutions for commercialization. To confirm the superiority of SMUP-Cell improvements, we demonstrated that a molecule secreted by SMUP-Cells is capable of polarizing inflammatory macrophages (M1) into their anti-inflammatory phenotype (M2) at the site of injury in a pain-associated osteoarthritis (OA) model. Lipopolysaccharide-stimulated macrophages co-cultured with SMUP-Cells expressed low levels of M1-phenotype markers (CD11b, tumor necrosis factor-α, interleukin-1α, and interleukin-6), but high levels of M2 markers (CD163 and arginase-1). To identify the paracrine action underlying the anti-inflammatory effect of SMUP-Cells, we employed a cytokine array and detected increased levels of pentraxin-related protein-3 (PTX-3). Additionally, PTX-3 mRNA silencing was applied to confirm PTX-3 function. PTX-3 silencing in SMUP-Cells significantly decreased their therapeutic effects against monosodium iodoacetate (MIA)-induced OA. Thus, PTX-3 expression in injected SMUP-Cells, applied as a therapeutic strategy, reduced pain in an OA model.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells10092420