Towards Highly Efficient Chalcopyrite Photocathodes for Water Splitting: The Use of Cocatalysts beyond Pt

Solar radiation is a renewable and clean energy source used in photoelectrochemical cells (PEC) to produce hydrogen gas as a powerful alternative to carbon‐based fuels. Semiconductors play a vital role in this approach, absorbing the incident solar photons and converting them into electrons and hole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2021-11, Vol.14 (21), p.4671-4679
Hauptverfasser: Salomao, Arthur Corrado, Santos Araujo, Mileny, Santos, Hugo Leandro Sousa, Medina, Marina, Mascaro, Lucia Helena, Andrade Junior, Marcos Antonio Santana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4679
container_issue 21
container_start_page 4671
container_title ChemSusChem
container_volume 14
creator Salomao, Arthur Corrado
Santos Araujo, Mileny
Santos, Hugo Leandro Sousa
Medina, Marina
Mascaro, Lucia Helena
Andrade Junior, Marcos Antonio Santana
description Solar radiation is a renewable and clean energy source used in photoelectrochemical cells (PEC) to produce hydrogen gas as a powerful alternative to carbon‐based fuels. Semiconductors play a vital role in this approach, absorbing the incident solar photons and converting them into electrons and holes. The hydrogen evolution reaction (HER) occurs in the interface of the p‐type semiconductor that works as a photocathode in the PEC. Cu‐chalcopyrites such as Cu(In, Ga)(Se,S)2 (CIGS) and CuIn(Se,S)2 (CIS) present excellent semiconductor characteristics for this purpose, but drawbacks as charge recombination, deficient chemical stability, and slow charge transfer kinetics, demanding improvements like the use of n‐type buffer layer, a protective layer, and a cocatalyst material. Concerning the last one, platinum (Pt) is the most efficient and stable material, but the high price due to its scarcity imposes the search for inexpensive and abundant alternative cocatalyst. The present Minireview highlighted the use of metal alloys, transition metal chalcogenides, and inorganic carbon‐based nanostructures as efficient alternative cocatalysts for HER in PEC. Replacing Pt: Chalcopyrite‐based photocathodes containing Pt as cocatalysts are highly efficient to convert solar energy to hydrogen from water splitting. In light of the high cost and low availability of Pt in the Earth's crust, this Minireview highlights the recent advances to replace Pt as cocatalyst and summarizes the main classes of compounds (transition metal chalcogenides, alloys, and carbon nanostructures) to also obtain highly efficient and stable photocathodes for hydrogen generation.
doi_str_mv 10.1002/cssc.202101312
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593536864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593536864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3502-1d24897c1314b94a71b1397e109f8db3bbcfd2a5b4071d34d9bd204238998e203</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMoWKtb1wHXrXnMK-5kqFYoWGiL7oY8OynjZExSyvx7p1Tq0tW9i_N9l3sAuMdoihEijzIEOSWIYIQpJhdghIssmaRZ8nl53im-Bjch7BDKEMuyEbBrd-BeBTi327rp4cwYK61uIyxr3kjX9d5GDZe1i07yWDulAzTOww8etYerrrEx2nb7BNe1hpugoTOwPKK86UMMUOjetQou4y24MrwJ-u53jsHmZbYu55PF--tb-byYSJoiMsGKJAXL5fBDIljCcywwZbnGiJlCCSqENIrwVCQox4omiglFUEJowVihCaJj8HDq7bz73usQq53b-3Y4WZGU0ZRmg4qBmp4o6V0IXpuq8_aL-77CqDrqrI46q7POIcBOgYNtdP8PXZWrVfmX_QHF9Xl7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593536864</pqid></control><display><type>article</type><title>Towards Highly Efficient Chalcopyrite Photocathodes for Water Splitting: The Use of Cocatalysts beyond Pt</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Salomao, Arthur Corrado ; Santos Araujo, Mileny ; Santos, Hugo Leandro Sousa ; Medina, Marina ; Mascaro, Lucia Helena ; Andrade Junior, Marcos Antonio Santana</creator><creatorcontrib>Salomao, Arthur Corrado ; Santos Araujo, Mileny ; Santos, Hugo Leandro Sousa ; Medina, Marina ; Mascaro, Lucia Helena ; Andrade Junior, Marcos Antonio Santana</creatorcontrib><description>Solar radiation is a renewable and clean energy source used in photoelectrochemical cells (PEC) to produce hydrogen gas as a powerful alternative to carbon‐based fuels. Semiconductors play a vital role in this approach, absorbing the incident solar photons and converting them into electrons and holes. The hydrogen evolution reaction (HER) occurs in the interface of the p‐type semiconductor that works as a photocathode in the PEC. Cu‐chalcopyrites such as Cu(In, Ga)(Se,S)2 (CIGS) and CuIn(Se,S)2 (CIS) present excellent semiconductor characteristics for this purpose, but drawbacks as charge recombination, deficient chemical stability, and slow charge transfer kinetics, demanding improvements like the use of n‐type buffer layer, a protective layer, and a cocatalyst material. Concerning the last one, platinum (Pt) is the most efficient and stable material, but the high price due to its scarcity imposes the search for inexpensive and abundant alternative cocatalyst. The present Minireview highlighted the use of metal alloys, transition metal chalcogenides, and inorganic carbon‐based nanostructures as efficient alternative cocatalysts for HER in PEC. Replacing Pt: Chalcopyrite‐based photocathodes containing Pt as cocatalysts are highly efficient to convert solar energy to hydrogen from water splitting. In light of the high cost and low availability of Pt in the Earth's crust, this Minireview highlights the recent advances to replace Pt as cocatalyst and summarizes the main classes of compounds (transition metal chalcogenides, alloys, and carbon nanostructures) to also obtain highly efficient and stable photocathodes for hydrogen generation.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202101312</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>alloys ; Buffer layers ; Carbon ; Chalcopyrite ; Charge transfer ; Clean energy ; cocatalyst ; Copper ; Copper indium gallium selenides ; Hydrogen evolution reactions ; Photocathodes ; Photoelectrochemical devices ; photoelectrochemistry ; Platinum ; Solar radiation ; Transition metal alloys ; Transition metal compounds ; Water splitting</subject><ispartof>ChemSusChem, 2021-11, Vol.14 (21), p.4671-4679</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3502-1d24897c1314b94a71b1397e109f8db3bbcfd2a5b4071d34d9bd204238998e203</citedby><cites>FETCH-LOGICAL-c3502-1d24897c1314b94a71b1397e109f8db3bbcfd2a5b4071d34d9bd204238998e203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202101312$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202101312$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Salomao, Arthur Corrado</creatorcontrib><creatorcontrib>Santos Araujo, Mileny</creatorcontrib><creatorcontrib>Santos, Hugo Leandro Sousa</creatorcontrib><creatorcontrib>Medina, Marina</creatorcontrib><creatorcontrib>Mascaro, Lucia Helena</creatorcontrib><creatorcontrib>Andrade Junior, Marcos Antonio Santana</creatorcontrib><title>Towards Highly Efficient Chalcopyrite Photocathodes for Water Splitting: The Use of Cocatalysts beyond Pt</title><title>ChemSusChem</title><description>Solar radiation is a renewable and clean energy source used in photoelectrochemical cells (PEC) to produce hydrogen gas as a powerful alternative to carbon‐based fuels. Semiconductors play a vital role in this approach, absorbing the incident solar photons and converting them into electrons and holes. The hydrogen evolution reaction (HER) occurs in the interface of the p‐type semiconductor that works as a photocathode in the PEC. Cu‐chalcopyrites such as Cu(In, Ga)(Se,S)2 (CIGS) and CuIn(Se,S)2 (CIS) present excellent semiconductor characteristics for this purpose, but drawbacks as charge recombination, deficient chemical stability, and slow charge transfer kinetics, demanding improvements like the use of n‐type buffer layer, a protective layer, and a cocatalyst material. Concerning the last one, platinum (Pt) is the most efficient and stable material, but the high price due to its scarcity imposes the search for inexpensive and abundant alternative cocatalyst. The present Minireview highlighted the use of metal alloys, transition metal chalcogenides, and inorganic carbon‐based nanostructures as efficient alternative cocatalysts for HER in PEC. Replacing Pt: Chalcopyrite‐based photocathodes containing Pt as cocatalysts are highly efficient to convert solar energy to hydrogen from water splitting. In light of the high cost and low availability of Pt in the Earth's crust, this Minireview highlights the recent advances to replace Pt as cocatalyst and summarizes the main classes of compounds (transition metal chalcogenides, alloys, and carbon nanostructures) to also obtain highly efficient and stable photocathodes for hydrogen generation.</description><subject>alloys</subject><subject>Buffer layers</subject><subject>Carbon</subject><subject>Chalcopyrite</subject><subject>Charge transfer</subject><subject>Clean energy</subject><subject>cocatalyst</subject><subject>Copper</subject><subject>Copper indium gallium selenides</subject><subject>Hydrogen evolution reactions</subject><subject>Photocathodes</subject><subject>Photoelectrochemical devices</subject><subject>photoelectrochemistry</subject><subject>Platinum</subject><subject>Solar radiation</subject><subject>Transition metal alloys</subject><subject>Transition metal compounds</subject><subject>Water splitting</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMoWKtb1wHXrXnMK-5kqFYoWGiL7oY8OynjZExSyvx7p1Tq0tW9i_N9l3sAuMdoihEijzIEOSWIYIQpJhdghIssmaRZ8nl53im-Bjch7BDKEMuyEbBrd-BeBTi327rp4cwYK61uIyxr3kjX9d5GDZe1i07yWDulAzTOww8etYerrrEx2nb7BNe1hpugoTOwPKK86UMMUOjetQou4y24MrwJ-u53jsHmZbYu55PF--tb-byYSJoiMsGKJAXL5fBDIljCcywwZbnGiJlCCSqENIrwVCQox4omiglFUEJowVihCaJj8HDq7bz73usQq53b-3Y4WZGU0ZRmg4qBmp4o6V0IXpuq8_aL-77CqDrqrI46q7POIcBOgYNtdP8PXZWrVfmX_QHF9Xl7</recordid><startdate>20211104</startdate><enddate>20211104</enddate><creator>Salomao, Arthur Corrado</creator><creator>Santos Araujo, Mileny</creator><creator>Santos, Hugo Leandro Sousa</creator><creator>Medina, Marina</creator><creator>Mascaro, Lucia Helena</creator><creator>Andrade Junior, Marcos Antonio Santana</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope></search><sort><creationdate>20211104</creationdate><title>Towards Highly Efficient Chalcopyrite Photocathodes for Water Splitting: The Use of Cocatalysts beyond Pt</title><author>Salomao, Arthur Corrado ; Santos Araujo, Mileny ; Santos, Hugo Leandro Sousa ; Medina, Marina ; Mascaro, Lucia Helena ; Andrade Junior, Marcos Antonio Santana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3502-1d24897c1314b94a71b1397e109f8db3bbcfd2a5b4071d34d9bd204238998e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>alloys</topic><topic>Buffer layers</topic><topic>Carbon</topic><topic>Chalcopyrite</topic><topic>Charge transfer</topic><topic>Clean energy</topic><topic>cocatalyst</topic><topic>Copper</topic><topic>Copper indium gallium selenides</topic><topic>Hydrogen evolution reactions</topic><topic>Photocathodes</topic><topic>Photoelectrochemical devices</topic><topic>photoelectrochemistry</topic><topic>Platinum</topic><topic>Solar radiation</topic><topic>Transition metal alloys</topic><topic>Transition metal compounds</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salomao, Arthur Corrado</creatorcontrib><creatorcontrib>Santos Araujo, Mileny</creatorcontrib><creatorcontrib>Santos, Hugo Leandro Sousa</creatorcontrib><creatorcontrib>Medina, Marina</creatorcontrib><creatorcontrib>Mascaro, Lucia Helena</creatorcontrib><creatorcontrib>Andrade Junior, Marcos Antonio Santana</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salomao, Arthur Corrado</au><au>Santos Araujo, Mileny</au><au>Santos, Hugo Leandro Sousa</au><au>Medina, Marina</au><au>Mascaro, Lucia Helena</au><au>Andrade Junior, Marcos Antonio Santana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Highly Efficient Chalcopyrite Photocathodes for Water Splitting: The Use of Cocatalysts beyond Pt</atitle><jtitle>ChemSusChem</jtitle><date>2021-11-04</date><risdate>2021</risdate><volume>14</volume><issue>21</issue><spage>4671</spage><epage>4679</epage><pages>4671-4679</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Solar radiation is a renewable and clean energy source used in photoelectrochemical cells (PEC) to produce hydrogen gas as a powerful alternative to carbon‐based fuels. Semiconductors play a vital role in this approach, absorbing the incident solar photons and converting them into electrons and holes. The hydrogen evolution reaction (HER) occurs in the interface of the p‐type semiconductor that works as a photocathode in the PEC. Cu‐chalcopyrites such as Cu(In, Ga)(Se,S)2 (CIGS) and CuIn(Se,S)2 (CIS) present excellent semiconductor characteristics for this purpose, but drawbacks as charge recombination, deficient chemical stability, and slow charge transfer kinetics, demanding improvements like the use of n‐type buffer layer, a protective layer, and a cocatalyst material. Concerning the last one, platinum (Pt) is the most efficient and stable material, but the high price due to its scarcity imposes the search for inexpensive and abundant alternative cocatalyst. The present Minireview highlighted the use of metal alloys, transition metal chalcogenides, and inorganic carbon‐based nanostructures as efficient alternative cocatalysts for HER in PEC. Replacing Pt: Chalcopyrite‐based photocathodes containing Pt as cocatalysts are highly efficient to convert solar energy to hydrogen from water splitting. In light of the high cost and low availability of Pt in the Earth's crust, this Minireview highlights the recent advances to replace Pt as cocatalyst and summarizes the main classes of compounds (transition metal chalcogenides, alloys, and carbon nanostructures) to also obtain highly efficient and stable photocathodes for hydrogen generation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.202101312</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2021-11, Vol.14 (21), p.4671-4679
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_journals_2593536864
source Wiley Online Library Journals Frontfile Complete
subjects alloys
Buffer layers
Carbon
Chalcopyrite
Charge transfer
Clean energy
cocatalyst
Copper
Copper indium gallium selenides
Hydrogen evolution reactions
Photocathodes
Photoelectrochemical devices
photoelectrochemistry
Platinum
Solar radiation
Transition metal alloys
Transition metal compounds
Water splitting
title Towards Highly Efficient Chalcopyrite Photocathodes for Water Splitting: The Use of Cocatalysts beyond Pt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Highly%20Efficient%20Chalcopyrite%20Photocathodes%20for%20Water%20Splitting:%20The%20Use%20of%20Cocatalysts%20beyond%20Pt&rft.jtitle=ChemSusChem&rft.au=Salomao,%20Arthur%20Corrado&rft.date=2021-11-04&rft.volume=14&rft.issue=21&rft.spage=4671&rft.epage=4679&rft.pages=4671-4679&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202101312&rft_dat=%3Cproquest_cross%3E2593536864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593536864&rft_id=info:pmid/&rfr_iscdi=true