Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films

The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-08, Vol.15 (8), p.12935-12944
Hauptverfasser: Barrows, Frank, Arava, Hanu, Zhou, Chun, Nealey, Paul, Segal-Peretz, Tamar, Liu, Yuzi, Bakaul, Saidur, Phatak, Charudatta, Petford-Long, Amanda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12944
container_issue 8
container_start_page 12935
container_title ACS nano
container_volume 15
creator Barrows, Frank
Arava, Hanu
Zhou, Chun
Nealey, Paul
Segal-Peretz, Tamar
Liu, Yuzi
Bakaul, Saidur
Phatak, Charudatta
Petford-Long, Amanda
description The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the corresponding current–voltage signatures that is of interest. We developed a patterned structure in titania films, with feature sizes of 11–20 nm, that allow us to explore confined transport. We describe how confinement changes the competing charge transport mechanisms, the patterned antidot array leads to displacement fields and confines the charge density that results in modified and emergent electron transport with an increase in conductivity. This emergent behavior can be described by considering electron interference effects. Characterization of the charge transport with electron holography and impedance spectroscopy, and through comparison with modeling, show that nanoscale confinement is a way to control quantum interference.
doi_str_mv 10.1021/acsnano.1c01340
format Article
fullrecord <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000693105500030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c467553477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-ef37f2a40b54f6583bf6fd25e09c356faecfbcd8d3abb088a66dd51cc60549e23</originalsourceid><addsrcrecordid>eNqNkM1r3DAQxUVpyVdzzlXkWjYZWZYsH4PZfEBCKGyhl2JkedQorEfB0lL630fLLskpkNMMw3szb36MnQm4EFCJS-sSWYoXwoGQNXxhR6KVegFG__761itxyI5TegZQjWn0ATuUddW0rdBH7M8DppicXSPvIvlAOCFlvvQeXU7c0siXE85_t8OfG0t5M_E7yjh7nJEc8kB8FbKlYPkV5TDGzFdPZXgd1lP6zr55u054uq8n7Nf1ctXdLu4fb-66q_uFlY3JC_Sy8ZWtYVC118rIwWs_VgqhdVJpb9H5wY1mlHYYwBir9Tgq4ZwGVbdYyRN2vtsbUw59ciGje3KRqDzRC1MZkLKILnciN8eUZvT9yxwmO__vBfRbmv2eZr-nWRw_do5_OERf1m4_fnMBgG6lAKVKJ7dq83l1V5jlEKmLG8rvh0qC_jluZiq0Poz1CnshmGo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Barrows, Frank ; Arava, Hanu ; Zhou, Chun ; Nealey, Paul ; Segal-Peretz, Tamar ; Liu, Yuzi ; Bakaul, Saidur ; Phatak, Charudatta ; Petford-Long, Amanda</creator><creatorcontrib>Barrows, Frank ; Arava, Hanu ; Zhou, Chun ; Nealey, Paul ; Segal-Peretz, Tamar ; Liu, Yuzi ; Bakaul, Saidur ; Phatak, Charudatta ; Petford-Long, Amanda ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the corresponding current–voltage signatures that is of interest. We developed a patterned structure in titania films, with feature sizes of 11–20 nm, that allow us to explore confined transport. We describe how confinement changes the competing charge transport mechanisms, the patterned antidot array leads to displacement fields and confines the charge density that results in modified and emergent electron transport with an increase in conductivity. This emergent behavior can be described by considering electron interference effects. Characterization of the charge transport with electron holography and impedance spectroscopy, and through comparison with modeling, show that nanoscale confinement is a way to control quantum interference.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c01340</identifier><identifier>PMID: 34279916</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; electron microscopy ; electron transport ; emergent properties ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; nanostructures ; Physical Sciences ; quantum con_nement ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology ; titania</subject><ispartof>ACS nano, 2021-08, Vol.15 (8), p.12935-12944</ispartof><rights>2021 UChicago Argonne, LLC, Operator of Argonne National Laboratory. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000693105500030</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a378t-ef37f2a40b54f6583bf6fd25e09c356faecfbcd8d3abb088a66dd51cc60549e23</citedby><cites>FETCH-LOGICAL-a378t-ef37f2a40b54f6583bf6fd25e09c356faecfbcd8d3abb088a66dd51cc60549e23</cites><orcidid>0000-0003-3889-142X ; 0000-0002-8733-1683 ; 0000-0003-3222-6429 ; 0000-0001-9307-9771 ; 0000-0002-8931-0296 ; 0000-0003-4866-7616 ; 0000000193079771 ; 0000000332226429 ; 0000000289310296 ; 000000033889142X ; 0000000287331683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c01340$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c01340$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,39263,56743,56793</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1828033$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barrows, Frank</creatorcontrib><creatorcontrib>Arava, Hanu</creatorcontrib><creatorcontrib>Zhou, Chun</creatorcontrib><creatorcontrib>Nealey, Paul</creatorcontrib><creatorcontrib>Segal-Peretz, Tamar</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Bakaul, Saidur</creatorcontrib><creatorcontrib>Phatak, Charudatta</creatorcontrib><creatorcontrib>Petford-Long, Amanda</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films</title><title>ACS nano</title><addtitle>ACS NANO</addtitle><addtitle>ACS Nano</addtitle><description>The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the corresponding current–voltage signatures that is of interest. We developed a patterned structure in titania films, with feature sizes of 11–20 nm, that allow us to explore confined transport. We describe how confinement changes the competing charge transport mechanisms, the patterned antidot array leads to displacement fields and confines the charge density that results in modified and emergent electron transport with an increase in conductivity. This emergent behavior can be described by considering electron interference effects. Characterization of the charge transport with electron holography and impedance spectroscopy, and through comparison with modeling, show that nanoscale confinement is a way to control quantum interference.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>electron microscopy</subject><subject>electron transport</subject><subject>emergent properties</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>nanostructures</subject><subject>Physical Sciences</subject><subject>quantum con_nement</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><subject>titania</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1r3DAQxUVpyVdzzlXkWjYZWZYsH4PZfEBCKGyhl2JkedQorEfB0lL630fLLskpkNMMw3szb36MnQm4EFCJS-sSWYoXwoGQNXxhR6KVegFG__761itxyI5TegZQjWn0ATuUddW0rdBH7M8DppicXSPvIvlAOCFlvvQeXU7c0siXE85_t8OfG0t5M_E7yjh7nJEc8kB8FbKlYPkV5TDGzFdPZXgd1lP6zr55u054uq8n7Nf1ctXdLu4fb-66q_uFlY3JC_Sy8ZWtYVC118rIwWs_VgqhdVJpb9H5wY1mlHYYwBir9Tgq4ZwGVbdYyRN2vtsbUw59ciGje3KRqDzRC1MZkLKILnciN8eUZvT9yxwmO__vBfRbmv2eZr-nWRw_do5_OERf1m4_fnMBgG6lAKVKJ7dq83l1V5jlEKmLG8rvh0qC_jluZiq0Poz1CnshmGo</recordid><startdate>20210824</startdate><enddate>20210824</enddate><creator>Barrows, Frank</creator><creator>Arava, Hanu</creator><creator>Zhou, Chun</creator><creator>Nealey, Paul</creator><creator>Segal-Peretz, Tamar</creator><creator>Liu, Yuzi</creator><creator>Bakaul, Saidur</creator><creator>Phatak, Charudatta</creator><creator>Petford-Long, Amanda</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><general>American Chemical Society (ACS)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3889-142X</orcidid><orcidid>https://orcid.org/0000-0002-8733-1683</orcidid><orcidid>https://orcid.org/0000-0003-3222-6429</orcidid><orcidid>https://orcid.org/0000-0001-9307-9771</orcidid><orcidid>https://orcid.org/0000-0002-8931-0296</orcidid><orcidid>https://orcid.org/0000-0003-4866-7616</orcidid><orcidid>https://orcid.org/0000000193079771</orcidid><orcidid>https://orcid.org/0000000332226429</orcidid><orcidid>https://orcid.org/0000000289310296</orcidid><orcidid>https://orcid.org/000000033889142X</orcidid><orcidid>https://orcid.org/0000000287331683</orcidid></search><sort><creationdate>20210824</creationdate><title>Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films</title><author>Barrows, Frank ; Arava, Hanu ; Zhou, Chun ; Nealey, Paul ; Segal-Peretz, Tamar ; Liu, Yuzi ; Bakaul, Saidur ; Phatak, Charudatta ; Petford-Long, Amanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-ef37f2a40b54f6583bf6fd25e09c356faecfbcd8d3abb088a66dd51cc60549e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>electron microscopy</topic><topic>electron transport</topic><topic>emergent properties</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>nanostructures</topic><topic>Physical Sciences</topic><topic>quantum con_nement</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><topic>titania</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrows, Frank</creatorcontrib><creatorcontrib>Arava, Hanu</creatorcontrib><creatorcontrib>Zhou, Chun</creatorcontrib><creatorcontrib>Nealey, Paul</creatorcontrib><creatorcontrib>Segal-Peretz, Tamar</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Bakaul, Saidur</creatorcontrib><creatorcontrib>Phatak, Charudatta</creatorcontrib><creatorcontrib>Petford-Long, Amanda</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrows, Frank</au><au>Arava, Hanu</au><au>Zhou, Chun</au><au>Nealey, Paul</au><au>Segal-Peretz, Tamar</au><au>Liu, Yuzi</au><au>Bakaul, Saidur</au><au>Phatak, Charudatta</au><au>Petford-Long, Amanda</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films</atitle><jtitle>ACS nano</jtitle><stitle>ACS NANO</stitle><addtitle>ACS Nano</addtitle><date>2021-08-24</date><risdate>2021</risdate><volume>15</volume><issue>8</issue><spage>12935</spage><epage>12944</epage><pages>12935-12944</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the corresponding current–voltage signatures that is of interest. We developed a patterned structure in titania films, with feature sizes of 11–20 nm, that allow us to explore confined transport. We describe how confinement changes the competing charge transport mechanisms, the patterned antidot array leads to displacement fields and confines the charge density that results in modified and emergent electron transport with an increase in conductivity. This emergent behavior can be described by considering electron interference effects. Characterization of the charge transport with electron holography and impedance spectroscopy, and through comparison with modeling, show that nanoscale confinement is a way to control quantum interference.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>34279916</pmid><doi>10.1021/acsnano.1c01340</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3889-142X</orcidid><orcidid>https://orcid.org/0000-0002-8733-1683</orcidid><orcidid>https://orcid.org/0000-0003-3222-6429</orcidid><orcidid>https://orcid.org/0000-0001-9307-9771</orcidid><orcidid>https://orcid.org/0000-0002-8931-0296</orcidid><orcidid>https://orcid.org/0000-0003-4866-7616</orcidid><orcidid>https://orcid.org/0000000193079771</orcidid><orcidid>https://orcid.org/0000000332226429</orcidid><orcidid>https://orcid.org/0000000289310296</orcidid><orcidid>https://orcid.org/000000033889142X</orcidid><orcidid>https://orcid.org/0000000287331683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-08, Vol.15 (8), p.12935-12944
issn 1936-0851
1936-086X
language eng
recordid cdi_webofscience_primary_000693105500030
source ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
electron microscopy
electron transport
emergent properties
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
nanostructures
Physical Sciences
quantum con_nement
Science & Technology
Science & Technology - Other Topics
Technology
titania
title Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscale%20Confinement%20Effects%20and%20Emergent%20Quantum%20Interference%20in%20Titania%20Antidot%20Thin%20Films&rft.jtitle=ACS%20nano&rft.au=Barrows,%20Frank&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-08-24&rft.volume=15&rft.issue=8&rft.spage=12935&rft.epage=12944&rft.pages=12935-12944&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c01340&rft_dat=%3Cacs_webof%3Ec467553477%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34279916&rfr_iscdi=true