Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films
The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the co...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-08, Vol.15 (8), p.12935-12944 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12944 |
---|---|
container_issue | 8 |
container_start_page | 12935 |
container_title | ACS nano |
container_volume | 15 |
creator | Barrows, Frank Arava, Hanu Zhou, Chun Nealey, Paul Segal-Peretz, Tamar Liu, Yuzi Bakaul, Saidur Phatak, Charudatta Petford-Long, Amanda |
description | The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the corresponding current–voltage signatures that is of interest. We developed a patterned structure in titania films, with feature sizes of 11–20 nm, that allow us to explore confined transport. We describe how confinement changes the competing charge transport mechanisms, the patterned antidot array leads to displacement fields and confines the charge density that results in modified and emergent electron transport with an increase in conductivity. This emergent behavior can be described by considering electron interference effects. Characterization of the charge transport with electron holography and impedance spectroscopy, and through comparison with modeling, show that nanoscale confinement is a way to control quantum interference. |
doi_str_mv | 10.1021/acsnano.1c01340 |
format | Article |
fullrecord | <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000693105500030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c467553477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-ef37f2a40b54f6583bf6fd25e09c356faecfbcd8d3abb088a66dd51cc60549e23</originalsourceid><addsrcrecordid>eNqNkM1r3DAQxUVpyVdzzlXkWjYZWZYsH4PZfEBCKGyhl2JkedQorEfB0lL630fLLskpkNMMw3szb36MnQm4EFCJS-sSWYoXwoGQNXxhR6KVegFG__761itxyI5TegZQjWn0ATuUddW0rdBH7M8DppicXSPvIvlAOCFlvvQeXU7c0siXE85_t8OfG0t5M_E7yjh7nJEc8kB8FbKlYPkV5TDGzFdPZXgd1lP6zr55u054uq8n7Nf1ctXdLu4fb-66q_uFlY3JC_Sy8ZWtYVC118rIwWs_VgqhdVJpb9H5wY1mlHYYwBir9Tgq4ZwGVbdYyRN2vtsbUw59ciGje3KRqDzRC1MZkLKILnciN8eUZvT9yxwmO__vBfRbmv2eZr-nWRw_do5_OERf1m4_fnMBgG6lAKVKJ7dq83l1V5jlEKmLG8rvh0qC_jluZiq0Poz1CnshmGo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Barrows, Frank ; Arava, Hanu ; Zhou, Chun ; Nealey, Paul ; Segal-Peretz, Tamar ; Liu, Yuzi ; Bakaul, Saidur ; Phatak, Charudatta ; Petford-Long, Amanda</creator><creatorcontrib>Barrows, Frank ; Arava, Hanu ; Zhou, Chun ; Nealey, Paul ; Segal-Peretz, Tamar ; Liu, Yuzi ; Bakaul, Saidur ; Phatak, Charudatta ; Petford-Long, Amanda ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the corresponding current–voltage signatures that is of interest. We developed a patterned structure in titania films, with feature sizes of 11–20 nm, that allow us to explore confined transport. We describe how confinement changes the competing charge transport mechanisms, the patterned antidot array leads to displacement fields and confines the charge density that results in modified and emergent electron transport with an increase in conductivity. This emergent behavior can be described by considering electron interference effects. Characterization of the charge transport with electron holography and impedance spectroscopy, and through comparison with modeling, show that nanoscale confinement is a way to control quantum interference.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c01340</identifier><identifier>PMID: 34279916</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; electron microscopy ; electron transport ; emergent properties ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; nanostructures ; Physical Sciences ; quantum con_nement ; Science & Technology ; Science & Technology - Other Topics ; Technology ; titania</subject><ispartof>ACS nano, 2021-08, Vol.15 (8), p.12935-12944</ispartof><rights>2021 UChicago Argonne, LLC, Operator of Argonne National Laboratory. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000693105500030</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a378t-ef37f2a40b54f6583bf6fd25e09c356faecfbcd8d3abb088a66dd51cc60549e23</citedby><cites>FETCH-LOGICAL-a378t-ef37f2a40b54f6583bf6fd25e09c356faecfbcd8d3abb088a66dd51cc60549e23</cites><orcidid>0000-0003-3889-142X ; 0000-0002-8733-1683 ; 0000-0003-3222-6429 ; 0000-0001-9307-9771 ; 0000-0002-8931-0296 ; 0000-0003-4866-7616 ; 0000000193079771 ; 0000000332226429 ; 0000000289310296 ; 000000033889142X ; 0000000287331683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c01340$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c01340$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,39263,56743,56793</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1828033$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barrows, Frank</creatorcontrib><creatorcontrib>Arava, Hanu</creatorcontrib><creatorcontrib>Zhou, Chun</creatorcontrib><creatorcontrib>Nealey, Paul</creatorcontrib><creatorcontrib>Segal-Peretz, Tamar</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Bakaul, Saidur</creatorcontrib><creatorcontrib>Phatak, Charudatta</creatorcontrib><creatorcontrib>Petford-Long, Amanda</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films</title><title>ACS nano</title><addtitle>ACS NANO</addtitle><addtitle>ACS Nano</addtitle><description>The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the corresponding current–voltage signatures that is of interest. We developed a patterned structure in titania films, with feature sizes of 11–20 nm, that allow us to explore confined transport. We describe how confinement changes the competing charge transport mechanisms, the patterned antidot array leads to displacement fields and confines the charge density that results in modified and emergent electron transport with an increase in conductivity. This emergent behavior can be described by considering electron interference effects. Characterization of the charge transport with electron holography and impedance spectroscopy, and through comparison with modeling, show that nanoscale confinement is a way to control quantum interference.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>electron microscopy</subject><subject>electron transport</subject><subject>emergent properties</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>nanostructures</subject><subject>Physical Sciences</subject><subject>quantum con_nement</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><subject>titania</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1r3DAQxUVpyVdzzlXkWjYZWZYsH4PZfEBCKGyhl2JkedQorEfB0lL630fLLskpkNMMw3szb36MnQm4EFCJS-sSWYoXwoGQNXxhR6KVegFG__761itxyI5TegZQjWn0ATuUddW0rdBH7M8DppicXSPvIvlAOCFlvvQeXU7c0siXE85_t8OfG0t5M_E7yjh7nJEc8kB8FbKlYPkV5TDGzFdPZXgd1lP6zr55u054uq8n7Nf1ctXdLu4fb-66q_uFlY3JC_Sy8ZWtYVC118rIwWs_VgqhdVJpb9H5wY1mlHYYwBir9Tgq4ZwGVbdYyRN2vtsbUw59ciGje3KRqDzRC1MZkLKILnciN8eUZvT9yxwmO__vBfRbmv2eZr-nWRw_do5_OERf1m4_fnMBgG6lAKVKJ7dq83l1V5jlEKmLG8rvh0qC_jluZiq0Poz1CnshmGo</recordid><startdate>20210824</startdate><enddate>20210824</enddate><creator>Barrows, Frank</creator><creator>Arava, Hanu</creator><creator>Zhou, Chun</creator><creator>Nealey, Paul</creator><creator>Segal-Peretz, Tamar</creator><creator>Liu, Yuzi</creator><creator>Bakaul, Saidur</creator><creator>Phatak, Charudatta</creator><creator>Petford-Long, Amanda</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><general>American Chemical Society (ACS)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3889-142X</orcidid><orcidid>https://orcid.org/0000-0002-8733-1683</orcidid><orcidid>https://orcid.org/0000-0003-3222-6429</orcidid><orcidid>https://orcid.org/0000-0001-9307-9771</orcidid><orcidid>https://orcid.org/0000-0002-8931-0296</orcidid><orcidid>https://orcid.org/0000-0003-4866-7616</orcidid><orcidid>https://orcid.org/0000000193079771</orcidid><orcidid>https://orcid.org/0000000332226429</orcidid><orcidid>https://orcid.org/0000000289310296</orcidid><orcidid>https://orcid.org/000000033889142X</orcidid><orcidid>https://orcid.org/0000000287331683</orcidid></search><sort><creationdate>20210824</creationdate><title>Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films</title><author>Barrows, Frank ; Arava, Hanu ; Zhou, Chun ; Nealey, Paul ; Segal-Peretz, Tamar ; Liu, Yuzi ; Bakaul, Saidur ; Phatak, Charudatta ; Petford-Long, Amanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-ef37f2a40b54f6583bf6fd25e09c356faecfbcd8d3abb088a66dd51cc60549e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>electron microscopy</topic><topic>electron transport</topic><topic>emergent properties</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>nanostructures</topic><topic>Physical Sciences</topic><topic>quantum con_nement</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><topic>titania</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrows, Frank</creatorcontrib><creatorcontrib>Arava, Hanu</creatorcontrib><creatorcontrib>Zhou, Chun</creatorcontrib><creatorcontrib>Nealey, Paul</creatorcontrib><creatorcontrib>Segal-Peretz, Tamar</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Bakaul, Saidur</creatorcontrib><creatorcontrib>Phatak, Charudatta</creatorcontrib><creatorcontrib>Petford-Long, Amanda</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrows, Frank</au><au>Arava, Hanu</au><au>Zhou, Chun</au><au>Nealey, Paul</au><au>Segal-Peretz, Tamar</au><au>Liu, Yuzi</au><au>Bakaul, Saidur</au><au>Phatak, Charudatta</au><au>Petford-Long, Amanda</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films</atitle><jtitle>ACS nano</jtitle><stitle>ACS NANO</stitle><addtitle>ACS Nano</addtitle><date>2021-08-24</date><risdate>2021</risdate><volume>15</volume><issue>8</issue><spage>12935</spage><epage>12944</epage><pages>12935-12944</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the corresponding current–voltage signatures that is of interest. We developed a patterned structure in titania films, with feature sizes of 11–20 nm, that allow us to explore confined transport. We describe how confinement changes the competing charge transport mechanisms, the patterned antidot array leads to displacement fields and confines the charge density that results in modified and emergent electron transport with an increase in conductivity. This emergent behavior can be described by considering electron interference effects. Characterization of the charge transport with electron holography and impedance spectroscopy, and through comparison with modeling, show that nanoscale confinement is a way to control quantum interference.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>34279916</pmid><doi>10.1021/acsnano.1c01340</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3889-142X</orcidid><orcidid>https://orcid.org/0000-0002-8733-1683</orcidid><orcidid>https://orcid.org/0000-0003-3222-6429</orcidid><orcidid>https://orcid.org/0000-0001-9307-9771</orcidid><orcidid>https://orcid.org/0000-0002-8931-0296</orcidid><orcidid>https://orcid.org/0000-0003-4866-7616</orcidid><orcidid>https://orcid.org/0000000193079771</orcidid><orcidid>https://orcid.org/0000000332226429</orcidid><orcidid>https://orcid.org/0000000289310296</orcidid><orcidid>https://orcid.org/000000033889142X</orcidid><orcidid>https://orcid.org/0000000287331683</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2021-08, Vol.15 (8), p.12935-12944 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_webofscience_primary_000693105500030 |
source | ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Chemistry Chemistry, Multidisciplinary Chemistry, Physical electron microscopy electron transport emergent properties INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology nanostructures Physical Sciences quantum con_nement Science & Technology Science & Technology - Other Topics Technology titania |
title | Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscale%20Confinement%20Effects%20and%20Emergent%20Quantum%20Interference%20in%20Titania%20Antidot%20Thin%20Films&rft.jtitle=ACS%20nano&rft.au=Barrows,%20Frank&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-08-24&rft.volume=15&rft.issue=8&rft.spage=12935&rft.epage=12944&rft.pages=12935-12944&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c01340&rft_dat=%3Cacs_webof%3Ec467553477%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34279916&rfr_iscdi=true |