Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation
Constructing low-dimensional covalent assemblies with tailored size and connectivity is challenging yet often key for applications in molecular electronics where optical and electronic properties of the quantum materials are highly structure dependent. We present a versatile approach for building su...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2021-11, Vol.13 (11), p.1133-1139 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1139 |
---|---|
container_issue | 11 |
container_start_page | 1133 |
container_title | Nature chemistry |
container_volume | 13 |
creator | Zhong, Qigang Ihle, Alexander Ahles, Sebastian Wegner, Hermann A. Schirmeisen, Andre Ebeling, Daniel |
description | Constructing low-dimensional covalent assemblies with tailored size and connectivity is challenging yet often key for applications in molecular electronics where optical and electronic properties of the quantum materials are highly structure dependent. We present a versatile approach for building such structures block by block on bilayer sodium chloride (NaCl) films on Cu(111) with the tip of an atomic force microscope, while tracking the structural changes with single-bond resolution. Covalent homo-dimers in
cis
and
trans
configurations and homo-/hetero-trimers were selectively synthesized by a sequence of dehalogenation, translational manipulation and intermolecular coupling of halogenated precursors. Further demonstrations of structural build-up include complex bonding motifs, like carbon–iodine–carbon bonds and fused carbon pentagons. This work paves the way for synthesizing elusive covalent nanoarchitectures, studying structural modifications and revealing pathways of intermolecular reactions.
Tailoring the size and connectivity of organic nanostructures is challenging but is often key in molecular electronics for tuning the properties of the quantum materials. Now an approach has been developed for building low-dimensional covalent architectures block by block on a surface by highly selective tip-induced intermolecular reactions. |
doi_str_mv | 10.1038/s41557-021-00773-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000692085000001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586666522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-dcf4e77e4fb0e0887575c481c701c58b196083172ef85342cecd68f2490c07463</originalsourceid><addsrcrecordid>eNqNkU-L1TAUxYsozh_9Aq4KbgSp3jRJk24EKToKA250HdL7bt9kaJNn0j6Zb286Hd6gC_FuEri_cziXUxSvGLxjwPX7JJiUqoKaVQBK8Uo8Kc6ZkrISXLRPT38OZ8VFSrcAjeSseV6ccSHyisN5seuCT3NccHZ-X2I42pH8XIa4t95h6a0PNuKNmwnnJVIqpzASLiOV_d3j_-hsmdB6v5ocYuipnLL-sIx2dsG_KJ4Ndkz08uG9LH58_vS9-1Jdf7v62n28rlAyNVc7HAQpRWLogUBrJZVEoRkqYCh1z9oGNGeqpkFLLmok3DV6qEULCEo0_LL4sPkeln6iHeZLoh3NIbrJxjsTrDN_bry7MftwNFpKaJXIBm8eDGL4uVCazeQS0jhaT2FJppZNy5UEwTL6-i_0NizR5_MypZs8sq4zVW8UxpBSpOEUhoFZSzRbiSaXaO5LNGuKt5voF_VhSOjII52EkGtsa9AS1lmD6P-nOzffN9KFxc9ZyjdpyrjfU3y84R_xfgPFRsCm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586666522</pqid></control><display><type>article</type><title>Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation</title><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Zhong, Qigang ; Ihle, Alexander ; Ahles, Sebastian ; Wegner, Hermann A. ; Schirmeisen, Andre ; Ebeling, Daniel</creator><creatorcontrib>Zhong, Qigang ; Ihle, Alexander ; Ahles, Sebastian ; Wegner, Hermann A. ; Schirmeisen, Andre ; Ebeling, Daniel</creatorcontrib><description>Constructing low-dimensional covalent assemblies with tailored size and connectivity is challenging yet often key for applications in molecular electronics where optical and electronic properties of the quantum materials are highly structure dependent. We present a versatile approach for building such structures block by block on bilayer sodium chloride (NaCl) films on Cu(111) with the tip of an atomic force microscope, while tracking the structural changes with single-bond resolution. Covalent homo-dimers in
cis
and
trans
configurations and homo-/hetero-trimers were selectively synthesized by a sequence of dehalogenation, translational manipulation and intermolecular coupling of halogenated precursors. Further demonstrations of structural build-up include complex bonding motifs, like carbon–iodine–carbon bonds and fused carbon pentagons. This work paves the way for synthesizing elusive covalent nanoarchitectures, studying structural modifications and revealing pathways of intermolecular reactions.
Tailoring the size and connectivity of organic nanostructures is challenging but is often key in molecular electronics for tuning the properties of the quantum materials. Now an approach has been developed for building low-dimensional covalent architectures block by block on a surface by highly selective tip-induced intermolecular reactions.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-021-00773-4</identifier><identifier>PMID: 34475530</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638 ; 639/925 ; Analytical Chemistry ; Atomic force microscopes ; Atomic force microscopy ; Bilayers ; Biochemistry ; Carbon ; Chemistry ; Chemistry and Materials Science ; Chemistry, Multidisciplinary ; Chemistry/Food Science ; Coupling (molecular) ; Covalence ; Dehalogenation ; Dimers ; Electronics ; Inorganic Chemistry ; Iodine ; Molecular electronics ; Optical properties ; Organic Chemistry ; Physical Chemistry ; Physical Sciences ; Science & Technology ; Sodium chloride ; Synthesis ; Trimers</subject><ispartof>Nature chemistry, 2021-11, Vol.13 (11), p.1133-1139</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>45</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000692085000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c517t-dcf4e77e4fb0e0887575c481c701c58b196083172ef85342cecd68f2490c07463</citedby><cites>FETCH-LOGICAL-c517t-dcf4e77e4fb0e0887575c481c701c58b196083172ef85342cecd68f2490c07463</cites><orcidid>0000-0003-1879-135X ; 0000-0002-0363-4290 ; 0000-0001-7260-6018 ; 0000-0001-5829-170X ; 0000-0001-7100-7363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Zhong, Qigang</creatorcontrib><creatorcontrib>Ihle, Alexander</creatorcontrib><creatorcontrib>Ahles, Sebastian</creatorcontrib><creatorcontrib>Wegner, Hermann A.</creatorcontrib><creatorcontrib>Schirmeisen, Andre</creatorcontrib><creatorcontrib>Ebeling, Daniel</creatorcontrib><title>Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>NAT CHEM</addtitle><description>Constructing low-dimensional covalent assemblies with tailored size and connectivity is challenging yet often key for applications in molecular electronics where optical and electronic properties of the quantum materials are highly structure dependent. We present a versatile approach for building such structures block by block on bilayer sodium chloride (NaCl) films on Cu(111) with the tip of an atomic force microscope, while tracking the structural changes with single-bond resolution. Covalent homo-dimers in
cis
and
trans
configurations and homo-/hetero-trimers were selectively synthesized by a sequence of dehalogenation, translational manipulation and intermolecular coupling of halogenated precursors. Further demonstrations of structural build-up include complex bonding motifs, like carbon–iodine–carbon bonds and fused carbon pentagons. This work paves the way for synthesizing elusive covalent nanoarchitectures, studying structural modifications and revealing pathways of intermolecular reactions.
Tailoring the size and connectivity of organic nanostructures is challenging but is often key in molecular electronics for tuning the properties of the quantum materials. Now an approach has been developed for building low-dimensional covalent architectures block by block on a surface by highly selective tip-induced intermolecular reactions.</description><subject>639/638</subject><subject>639/925</subject><subject>Analytical Chemistry</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Bilayers</subject><subject>Biochemistry</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry/Food Science</subject><subject>Coupling (molecular)</subject><subject>Covalence</subject><subject>Dehalogenation</subject><subject>Dimers</subject><subject>Electronics</subject><subject>Inorganic Chemistry</subject><subject>Iodine</subject><subject>Molecular electronics</subject><subject>Optical properties</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Sodium chloride</subject><subject>Synthesis</subject><subject>Trimers</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU-L1TAUxYsozh_9Aq4KbgSp3jRJk24EKToKA250HdL7bt9kaJNn0j6Zb286Hd6gC_FuEri_cziXUxSvGLxjwPX7JJiUqoKaVQBK8Uo8Kc6ZkrISXLRPT38OZ8VFSrcAjeSseV6ccSHyisN5seuCT3NccHZ-X2I42pH8XIa4t95h6a0PNuKNmwnnJVIqpzASLiOV_d3j_-hsmdB6v5ocYuipnLL-sIx2dsG_KJ4Ndkz08uG9LH58_vS9-1Jdf7v62n28rlAyNVc7HAQpRWLogUBrJZVEoRkqYCh1z9oGNGeqpkFLLmok3DV6qEULCEo0_LL4sPkeln6iHeZLoh3NIbrJxjsTrDN_bry7MftwNFpKaJXIBm8eDGL4uVCazeQS0jhaT2FJppZNy5UEwTL6-i_0NizR5_MypZs8sq4zVW8UxpBSpOEUhoFZSzRbiSaXaO5LNGuKt5voF_VhSOjII52EkGtsa9AS1lmD6P-nOzffN9KFxc9ZyjdpyrjfU3y84R_xfgPFRsCm</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zhong, Qigang</creator><creator>Ihle, Alexander</creator><creator>Ahles, Sebastian</creator><creator>Wegner, Hermann A.</creator><creator>Schirmeisen, Andre</creator><creator>Ebeling, Daniel</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1879-135X</orcidid><orcidid>https://orcid.org/0000-0002-0363-4290</orcidid><orcidid>https://orcid.org/0000-0001-7260-6018</orcidid><orcidid>https://orcid.org/0000-0001-5829-170X</orcidid><orcidid>https://orcid.org/0000-0001-7100-7363</orcidid></search><sort><creationdate>20211101</creationdate><title>Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation</title><author>Zhong, Qigang ; Ihle, Alexander ; Ahles, Sebastian ; Wegner, Hermann A. ; Schirmeisen, Andre ; Ebeling, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-dcf4e77e4fb0e0887575c481c701c58b196083172ef85342cecd68f2490c07463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638</topic><topic>639/925</topic><topic>Analytical Chemistry</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Bilayers</topic><topic>Biochemistry</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry/Food Science</topic><topic>Coupling (molecular)</topic><topic>Covalence</topic><topic>Dehalogenation</topic><topic>Dimers</topic><topic>Electronics</topic><topic>Inorganic Chemistry</topic><topic>Iodine</topic><topic>Molecular electronics</topic><topic>Optical properties</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Sodium chloride</topic><topic>Synthesis</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Qigang</creatorcontrib><creatorcontrib>Ihle, Alexander</creatorcontrib><creatorcontrib>Ahles, Sebastian</creatorcontrib><creatorcontrib>Wegner, Hermann A.</creatorcontrib><creatorcontrib>Schirmeisen, Andre</creatorcontrib><creatorcontrib>Ebeling, Daniel</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Qigang</au><au>Ihle, Alexander</au><au>Ahles, Sebastian</au><au>Wegner, Hermann A.</au><au>Schirmeisen, Andre</au><au>Ebeling, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><stitle>NAT CHEM</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>13</volume><issue>11</issue><spage>1133</spage><epage>1139</epage><pages>1133-1139</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Constructing low-dimensional covalent assemblies with tailored size and connectivity is challenging yet often key for applications in molecular electronics where optical and electronic properties of the quantum materials are highly structure dependent. We present a versatile approach for building such structures block by block on bilayer sodium chloride (NaCl) films on Cu(111) with the tip of an atomic force microscope, while tracking the structural changes with single-bond resolution. Covalent homo-dimers in
cis
and
trans
configurations and homo-/hetero-trimers were selectively synthesized by a sequence of dehalogenation, translational manipulation and intermolecular coupling of halogenated precursors. Further demonstrations of structural build-up include complex bonding motifs, like carbon–iodine–carbon bonds and fused carbon pentagons. This work paves the way for synthesizing elusive covalent nanoarchitectures, studying structural modifications and revealing pathways of intermolecular reactions.
Tailoring the size and connectivity of organic nanostructures is challenging but is often key in molecular electronics for tuning the properties of the quantum materials. Now an approach has been developed for building low-dimensional covalent architectures block by block on a surface by highly selective tip-induced intermolecular reactions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34475530</pmid><doi>10.1038/s41557-021-00773-4</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1879-135X</orcidid><orcidid>https://orcid.org/0000-0002-0363-4290</orcidid><orcidid>https://orcid.org/0000-0001-7260-6018</orcidid><orcidid>https://orcid.org/0000-0001-5829-170X</orcidid><orcidid>https://orcid.org/0000-0001-7100-7363</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2021-11, Vol.13 (11), p.1133-1139 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_webofscience_primary_000692085000001 |
source | Nature; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | 639/638 639/925 Analytical Chemistry Atomic force microscopes Atomic force microscopy Bilayers Biochemistry Carbon Chemistry Chemistry and Materials Science Chemistry, Multidisciplinary Chemistry/Food Science Coupling (molecular) Covalence Dehalogenation Dimers Electronics Inorganic Chemistry Iodine Molecular electronics Optical properties Organic Chemistry Physical Chemistry Physical Sciences Science & Technology Sodium chloride Synthesis Trimers |
title | Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20covalent%20organic%20nanoarchitectures%20molecule%20by%20molecule%20via%20scanning%20probe%20manipulation&rft.jtitle=Nature%20chemistry&rft.au=Zhong,%20Qigang&rft.date=2021-11-01&rft.volume=13&rft.issue=11&rft.spage=1133&rft.epage=1139&rft.pages=1133-1139&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-021-00773-4&rft_dat=%3Cproquest_webof%3E2586666522%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586666522&rft_id=info:pmid/34475530&rfr_iscdi=true |