Complete vibration band gap characteristics of two-dimensional periodic grid structures
In this article, the spectral element method combined with Bloch theorem is applied to calculate complete vibration band gap characteristics of two-dimensional periodic grid structures, which is verified by structural vibration transmission results based on spectral element method and finite element...
Gespeichert in:
Veröffentlicht in: | Composite structures 2021-10, Vol.274, p.114368, Article 114368 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114368 |
container_title | Composite structures |
container_volume | 274 |
creator | Wang, Chuanlong Yao, Xiongliang Wu, Guoxun Tang, Li |
description | In this article, the spectral element method combined with Bloch theorem is applied to calculate complete vibration band gap characteristics of two-dimensional periodic grid structures, which is verified by structural vibration transmission results based on spectral element method and finite element method. According to the differential equation of motion, complete spectral stiffness matrix of beam element is established at first, then stiffness matrix of grid structure can be obtained by coordinate transformation and assembly method, so as to form governing equation of motion based on Bloch boundary conditions. The band gap characteristics of periodic structures can be calculated by solving motion equation. Through band gap distribution analysis of two-dimensional periodic grid structures, the dispersion relations of different unit arrangements and effects of material and structural parameters on band gap characteristics are obtained which can be applied to acoustic design or vibration and noise reduction areas. |
doi_str_mv | 10.1016/j.compstruct.2021.114368 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compstruct_2021_114368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822321008308</els_id><sourcerecordid>S0263822321008308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-815d1cf8afefbf3a6beb96183f206d17996195f65ff0114592ade480fab8e0db3</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoWKvvkBfYNZP9afZSi39Q8EbxMmSTSc3SbpYkrfj2pqzgpVfDMOccznyEUGAlMGhvh1L7_RRTOOhUcsahBKirVpyRBYhVVwATzTlZMN5WheC8uiRXMQ6MMVEDLMjHOrt3mJAeXR9Ucn6kvRoN3aqJ6k8VlE4YXExOR-otTV--MG6PY8xKtaNTPnrjNN0GZ-hc4xAwXpMLq3YRb37nkrw_Prytn4vN69PL-m5TaF6LVAhoDGgrlEXb20q1PfZdC6KynLUGVl1eusa2jbUs_9V0XBmsBbOqF8hMXy2JmHN18DEGtHIKbq_CtwQmT4DkIP8AyRMgOQPK1vvZirnf0WGQUTscNRoXMGuNd_-H_ACIn3db</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complete vibration band gap characteristics of two-dimensional periodic grid structures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Chuanlong ; Yao, Xiongliang ; Wu, Guoxun ; Tang, Li</creator><creatorcontrib>Wang, Chuanlong ; Yao, Xiongliang ; Wu, Guoxun ; Tang, Li</creatorcontrib><description>In this article, the spectral element method combined with Bloch theorem is applied to calculate complete vibration band gap characteristics of two-dimensional periodic grid structures, which is verified by structural vibration transmission results based on spectral element method and finite element method. According to the differential equation of motion, complete spectral stiffness matrix of beam element is established at first, then stiffness matrix of grid structure can be obtained by coordinate transformation and assembly method, so as to form governing equation of motion based on Bloch boundary conditions. The band gap characteristics of periodic structures can be calculated by solving motion equation. Through band gap distribution analysis of two-dimensional periodic grid structures, the dispersion relations of different unit arrangements and effects of material and structural parameters on band gap characteristics are obtained which can be applied to acoustic design or vibration and noise reduction areas.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2021.114368</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Band gap characteristics ; Complete vibration ; Grid structures ; Spectral element method</subject><ispartof>Composite structures, 2021-10, Vol.274, p.114368, Article 114368</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c248t-815d1cf8afefbf3a6beb96183f206d17996195f65ff0114592ade480fab8e0db3</citedby><cites>FETCH-LOGICAL-c248t-815d1cf8afefbf3a6beb96183f206d17996195f65ff0114592ade480fab8e0db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruct.2021.114368$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Wang, Chuanlong</creatorcontrib><creatorcontrib>Yao, Xiongliang</creatorcontrib><creatorcontrib>Wu, Guoxun</creatorcontrib><creatorcontrib>Tang, Li</creatorcontrib><title>Complete vibration band gap characteristics of two-dimensional periodic grid structures</title><title>Composite structures</title><description>In this article, the spectral element method combined with Bloch theorem is applied to calculate complete vibration band gap characteristics of two-dimensional periodic grid structures, which is verified by structural vibration transmission results based on spectral element method and finite element method. According to the differential equation of motion, complete spectral stiffness matrix of beam element is established at first, then stiffness matrix of grid structure can be obtained by coordinate transformation and assembly method, so as to form governing equation of motion based on Bloch boundary conditions. The band gap characteristics of periodic structures can be calculated by solving motion equation. Through band gap distribution analysis of two-dimensional periodic grid structures, the dispersion relations of different unit arrangements and effects of material and structural parameters on band gap characteristics are obtained which can be applied to acoustic design or vibration and noise reduction areas.</description><subject>Band gap characteristics</subject><subject>Complete vibration</subject><subject>Grid structures</subject><subject>Spectral element method</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KAzEQhYMoWKvvkBfYNZP9afZSi39Q8EbxMmSTSc3SbpYkrfj2pqzgpVfDMOccznyEUGAlMGhvh1L7_RRTOOhUcsahBKirVpyRBYhVVwATzTlZMN5WheC8uiRXMQ6MMVEDLMjHOrt3mJAeXR9Ucn6kvRoN3aqJ6k8VlE4YXExOR-otTV--MG6PY8xKtaNTPnrjNN0GZ-hc4xAwXpMLq3YRb37nkrw_Prytn4vN69PL-m5TaF6LVAhoDGgrlEXb20q1PfZdC6KynLUGVl1eusa2jbUs_9V0XBmsBbOqF8hMXy2JmHN18DEGtHIKbq_CtwQmT4DkIP8AyRMgOQPK1vvZirnf0WGQUTscNRoXMGuNd_-H_ACIn3db</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Wang, Chuanlong</creator><creator>Yao, Xiongliang</creator><creator>Wu, Guoxun</creator><creator>Tang, Li</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211015</creationdate><title>Complete vibration band gap characteristics of two-dimensional periodic grid structures</title><author>Wang, Chuanlong ; Yao, Xiongliang ; Wu, Guoxun ; Tang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-815d1cf8afefbf3a6beb96183f206d17996195f65ff0114592ade480fab8e0db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Band gap characteristics</topic><topic>Complete vibration</topic><topic>Grid structures</topic><topic>Spectral element method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chuanlong</creatorcontrib><creatorcontrib>Yao, Xiongliang</creatorcontrib><creatorcontrib>Wu, Guoxun</creatorcontrib><creatorcontrib>Tang, Li</creatorcontrib><collection>CrossRef</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chuanlong</au><au>Yao, Xiongliang</au><au>Wu, Guoxun</au><au>Tang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete vibration band gap characteristics of two-dimensional periodic grid structures</atitle><jtitle>Composite structures</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>274</volume><spage>114368</spage><pages>114368-</pages><artnum>114368</artnum><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>In this article, the spectral element method combined with Bloch theorem is applied to calculate complete vibration band gap characteristics of two-dimensional periodic grid structures, which is verified by structural vibration transmission results based on spectral element method and finite element method. According to the differential equation of motion, complete spectral stiffness matrix of beam element is established at first, then stiffness matrix of grid structure can be obtained by coordinate transformation and assembly method, so as to form governing equation of motion based on Bloch boundary conditions. The band gap characteristics of periodic structures can be calculated by solving motion equation. Through band gap distribution analysis of two-dimensional periodic grid structures, the dispersion relations of different unit arrangements and effects of material and structural parameters on band gap characteristics are obtained which can be applied to acoustic design or vibration and noise reduction areas.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2021.114368</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8223 |
ispartof | Composite structures, 2021-10, Vol.274, p.114368, Article 114368 |
issn | 0263-8223 1879-1085 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_compstruct_2021_114368 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Band gap characteristics Complete vibration Grid structures Spectral element method |
title | Complete vibration band gap characteristics of two-dimensional periodic grid structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20vibration%20band%20gap%20characteristics%20of%20two-dimensional%20periodic%20grid%20structures&rft.jtitle=Composite%20structures&rft.au=Wang,%20Chuanlong&rft.date=2021-10-15&rft.volume=274&rft.spage=114368&rft.pages=114368-&rft.artnum=114368&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2021.114368&rft_dat=%3Celsevier_cross%3ES0263822321008308%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0263822321008308&rfr_iscdi=true |