Complete vibration band gap characteristics of two-dimensional periodic grid structures

In this article, the spectral element method combined with Bloch theorem is applied to calculate complete vibration band gap characteristics of two-dimensional periodic grid structures, which is verified by structural vibration transmission results based on spectral element method and finite element...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2021-10, Vol.274, p.114368, Article 114368
Hauptverfasser: Wang, Chuanlong, Yao, Xiongliang, Wu, Guoxun, Tang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114368
container_title Composite structures
container_volume 274
creator Wang, Chuanlong
Yao, Xiongliang
Wu, Guoxun
Tang, Li
description In this article, the spectral element method combined with Bloch theorem is applied to calculate complete vibration band gap characteristics of two-dimensional periodic grid structures, which is verified by structural vibration transmission results based on spectral element method and finite element method. According to the differential equation of motion, complete spectral stiffness matrix of beam element is established at first, then stiffness matrix of grid structure can be obtained by coordinate transformation and assembly method, so as to form governing equation of motion based on Bloch boundary conditions. The band gap characteristics of periodic structures can be calculated by solving motion equation. Through band gap distribution analysis of two-dimensional periodic grid structures, the dispersion relations of different unit arrangements and effects of material and structural parameters on band gap characteristics are obtained which can be applied to acoustic design or vibration and noise reduction areas.
doi_str_mv 10.1016/j.compstruct.2021.114368
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compstruct_2021_114368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822321008308</els_id><sourcerecordid>S0263822321008308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-815d1cf8afefbf3a6beb96183f206d17996195f65ff0114592ade480fab8e0db3</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoWKvvkBfYNZP9afZSi39Q8EbxMmSTSc3SbpYkrfj2pqzgpVfDMOccznyEUGAlMGhvh1L7_RRTOOhUcsahBKirVpyRBYhVVwATzTlZMN5WheC8uiRXMQ6MMVEDLMjHOrt3mJAeXR9Ucn6kvRoN3aqJ6k8VlE4YXExOR-otTV--MG6PY8xKtaNTPnrjNN0GZ-hc4xAwXpMLq3YRb37nkrw_Prytn4vN69PL-m5TaF6LVAhoDGgrlEXb20q1PfZdC6KynLUGVl1eusa2jbUs_9V0XBmsBbOqF8hMXy2JmHN18DEGtHIKbq_CtwQmT4DkIP8AyRMgOQPK1vvZirnf0WGQUTscNRoXMGuNd_-H_ACIn3db</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complete vibration band gap characteristics of two-dimensional periodic grid structures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Chuanlong ; Yao, Xiongliang ; Wu, Guoxun ; Tang, Li</creator><creatorcontrib>Wang, Chuanlong ; Yao, Xiongliang ; Wu, Guoxun ; Tang, Li</creatorcontrib><description>In this article, the spectral element method combined with Bloch theorem is applied to calculate complete vibration band gap characteristics of two-dimensional periodic grid structures, which is verified by structural vibration transmission results based on spectral element method and finite element method. According to the differential equation of motion, complete spectral stiffness matrix of beam element is established at first, then stiffness matrix of grid structure can be obtained by coordinate transformation and assembly method, so as to form governing equation of motion based on Bloch boundary conditions. The band gap characteristics of periodic structures can be calculated by solving motion equation. Through band gap distribution analysis of two-dimensional periodic grid structures, the dispersion relations of different unit arrangements and effects of material and structural parameters on band gap characteristics are obtained which can be applied to acoustic design or vibration and noise reduction areas.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2021.114368</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Band gap characteristics ; Complete vibration ; Grid structures ; Spectral element method</subject><ispartof>Composite structures, 2021-10, Vol.274, p.114368, Article 114368</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c248t-815d1cf8afefbf3a6beb96183f206d17996195f65ff0114592ade480fab8e0db3</citedby><cites>FETCH-LOGICAL-c248t-815d1cf8afefbf3a6beb96183f206d17996195f65ff0114592ade480fab8e0db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruct.2021.114368$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Wang, Chuanlong</creatorcontrib><creatorcontrib>Yao, Xiongliang</creatorcontrib><creatorcontrib>Wu, Guoxun</creatorcontrib><creatorcontrib>Tang, Li</creatorcontrib><title>Complete vibration band gap characteristics of two-dimensional periodic grid structures</title><title>Composite structures</title><description>In this article, the spectral element method combined with Bloch theorem is applied to calculate complete vibration band gap characteristics of two-dimensional periodic grid structures, which is verified by structural vibration transmission results based on spectral element method and finite element method. According to the differential equation of motion, complete spectral stiffness matrix of beam element is established at first, then stiffness matrix of grid structure can be obtained by coordinate transformation and assembly method, so as to form governing equation of motion based on Bloch boundary conditions. The band gap characteristics of periodic structures can be calculated by solving motion equation. Through band gap distribution analysis of two-dimensional periodic grid structures, the dispersion relations of different unit arrangements and effects of material and structural parameters on band gap characteristics are obtained which can be applied to acoustic design or vibration and noise reduction areas.</description><subject>Band gap characteristics</subject><subject>Complete vibration</subject><subject>Grid structures</subject><subject>Spectral element method</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KAzEQhYMoWKvvkBfYNZP9afZSi39Q8EbxMmSTSc3SbpYkrfj2pqzgpVfDMOccznyEUGAlMGhvh1L7_RRTOOhUcsahBKirVpyRBYhVVwATzTlZMN5WheC8uiRXMQ6MMVEDLMjHOrt3mJAeXR9Ucn6kvRoN3aqJ6k8VlE4YXExOR-otTV--MG6PY8xKtaNTPnrjNN0GZ-hc4xAwXpMLq3YRb37nkrw_Prytn4vN69PL-m5TaF6LVAhoDGgrlEXb20q1PfZdC6KynLUGVl1eusa2jbUs_9V0XBmsBbOqF8hMXy2JmHN18DEGtHIKbq_CtwQmT4DkIP8AyRMgOQPK1vvZirnf0WGQUTscNRoXMGuNd_-H_ACIn3db</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Wang, Chuanlong</creator><creator>Yao, Xiongliang</creator><creator>Wu, Guoxun</creator><creator>Tang, Li</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211015</creationdate><title>Complete vibration band gap characteristics of two-dimensional periodic grid structures</title><author>Wang, Chuanlong ; Yao, Xiongliang ; Wu, Guoxun ; Tang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-815d1cf8afefbf3a6beb96183f206d17996195f65ff0114592ade480fab8e0db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Band gap characteristics</topic><topic>Complete vibration</topic><topic>Grid structures</topic><topic>Spectral element method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chuanlong</creatorcontrib><creatorcontrib>Yao, Xiongliang</creatorcontrib><creatorcontrib>Wu, Guoxun</creatorcontrib><creatorcontrib>Tang, Li</creatorcontrib><collection>CrossRef</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chuanlong</au><au>Yao, Xiongliang</au><au>Wu, Guoxun</au><au>Tang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete vibration band gap characteristics of two-dimensional periodic grid structures</atitle><jtitle>Composite structures</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>274</volume><spage>114368</spage><pages>114368-</pages><artnum>114368</artnum><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>In this article, the spectral element method combined with Bloch theorem is applied to calculate complete vibration band gap characteristics of two-dimensional periodic grid structures, which is verified by structural vibration transmission results based on spectral element method and finite element method. According to the differential equation of motion, complete spectral stiffness matrix of beam element is established at first, then stiffness matrix of grid structure can be obtained by coordinate transformation and assembly method, so as to form governing equation of motion based on Bloch boundary conditions. The band gap characteristics of periodic structures can be calculated by solving motion equation. Through band gap distribution analysis of two-dimensional periodic grid structures, the dispersion relations of different unit arrangements and effects of material and structural parameters on band gap characteristics are obtained which can be applied to acoustic design or vibration and noise reduction areas.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2021.114368</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2021-10, Vol.274, p.114368, Article 114368
issn 0263-8223
1879-1085
language eng
recordid cdi_crossref_primary_10_1016_j_compstruct_2021_114368
source Elsevier ScienceDirect Journals Complete
subjects Band gap characteristics
Complete vibration
Grid structures
Spectral element method
title Complete vibration band gap characteristics of two-dimensional periodic grid structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20vibration%20band%20gap%20characteristics%20of%20two-dimensional%20periodic%20grid%20structures&rft.jtitle=Composite%20structures&rft.au=Wang,%20Chuanlong&rft.date=2021-10-15&rft.volume=274&rft.spage=114368&rft.pages=114368-&rft.artnum=114368&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2021.114368&rft_dat=%3Celsevier_cross%3ES0263822321008308%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0263822321008308&rfr_iscdi=true