Benchmarking the geometrical robustness of a Virtual Element Poisson solver

Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and computers in simulation 2021-12, Vol.190, p.1392-1414
Hauptverfasser: Attene, Marco, Biasotti, Silvia, Bertoluzza, Silvia, Cabiddu, Daniela, Livesu, Marco, Patanè, Giuseppe, Pennacchio, Micol, Prada, Daniele, Spagnuolo, Michela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1414
container_issue
container_start_page 1392
container_title Mathematics and computers in simulation
container_volume 190
creator Attene, Marco
Biasotti, Silvia
Bertoluzza, Silvia
Cabiddu, Daniela
Livesu, Marco
Patanè, Giuseppe
Pennacchio, Micol
Prada, Daniele
Spagnuolo, Michela
description Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh and the performances of the solver are well known, the characterization of a good polytopal element is still subject to ongoing research. Current shape regularity criteria are quite restrictive, and greatly limit the set of valid meshes. Nevertheless, numerical experiments revealed that PEM solvers can perform well on meshes that are far outside the strict boundaries imposed by the current theory, suggesting that the real capabilities of these methods are much higher. In this work, we propose a benchmark to study the correlation between general 2D polygonal meshes and PEM solvers which we test on a virtual element solver for the Poisson equation. The benchmark aims to explore the space of 2D polygonal meshes and polygonal quality metrics, in order to understand if and how shape regularity, defined according to different criteria, affects the performance of the method. The proposed tool is quite general, and can be potentially used to study any PEM solver. Besides discussing the basics of the benchmark, we demonstrate its application on a representative member of the PEM family, namely the Virtual Element Method, also discussing our findings.
doi_str_mv 10.1016/j.matcom.2021.07.018
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000690877900006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378475421002706</els_id><sourcerecordid>S0378475421002706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-d402052a44fa27a5fa555468eed5aaff729a173739482d410bc7c3114223e7423</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPwDzj0jlqcNG3aCxJUfIlJcACuUZa6W0bboCQb4t-TaRNHxMmW9T6W_RByTiGjQMvLVTaooO2QMWA0A5EBrQ7IhFaCpYKW5SGZQC6qlIuCH5MT71cAEPtiQp5ucNTLQbkPMy6SsMRkgXbA4IxWfeLsfO3DiN4ntktU8m5cWMf5bY8DjiF5scZ7Oybe9ht0p-SoU73Hs32dkre729fmIZ093z8217NU51CGtOXAoGCK804xoYpOFUXBywqxLZTqOsFqRUUu8ppXrOUU5lronFLOWI6Cs3xK-G6vdtZ7h538dCa-8C0pyK0QuZI7IXIrRIKQUUjELnbYF85t57WJn-MvGo2UNVRC1LBtY7r6f7oxQQVjx8auxxDRqx2KUcLGoJN7vDUOdZCtNX9f-gMKRoxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Benchmarking the geometrical robustness of a Virtual Element Poisson solver</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Attene, Marco ; Biasotti, Silvia ; Bertoluzza, Silvia ; Cabiddu, Daniela ; Livesu, Marco ; Patanè, Giuseppe ; Pennacchio, Micol ; Prada, Daniele ; Spagnuolo, Michela</creator><creatorcontrib>Attene, Marco ; Biasotti, Silvia ; Bertoluzza, Silvia ; Cabiddu, Daniela ; Livesu, Marco ; Patanè, Giuseppe ; Pennacchio, Micol ; Prada, Daniele ; Spagnuolo, Michela</creatorcontrib><description>Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh and the performances of the solver are well known, the characterization of a good polytopal element is still subject to ongoing research. Current shape regularity criteria are quite restrictive, and greatly limit the set of valid meshes. Nevertheless, numerical experiments revealed that PEM solvers can perform well on meshes that are far outside the strict boundaries imposed by the current theory, suggesting that the real capabilities of these methods are much higher. In this work, we propose a benchmark to study the correlation between general 2D polygonal meshes and PEM solvers which we test on a virtual element solver for the Poisson equation. The benchmark aims to explore the space of 2D polygonal meshes and polygonal quality metrics, in order to understand if and how shape regularity, defined according to different criteria, affects the performance of the method. The proposed tool is quite general, and can be potentially used to study any PEM solver. Besides discussing the basics of the benchmark, we demonstrate its application on a representative member of the PEM family, namely the Virtual Element Method, also discussing our findings.</description><identifier>ISSN: 0378-4754</identifier><identifier>EISSN: 1872-7166</identifier><identifier>DOI: 10.1016/j.matcom.2021.07.018</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Computer Science ; Computer Science, Interdisciplinary Applications ; Computer Science, Software Engineering ; Geometric metrics ; Geometry-PEM correlation ; Mathematics ; Mathematics, Applied ; Physical Sciences ; Polygonal meshes ; Polytopal Element Methods ; Science &amp; Technology ; Technology ; Virtual Element Methods</subject><ispartof>Mathematics and computers in simulation, 2021-12, Vol.190, p.1392-1414</ispartof><rights>2021 International Association for Mathematics and Computers in Simulation (IMACS)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000690877900006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c306t-d402052a44fa27a5fa555468eed5aaff729a173739482d410bc7c3114223e7423</citedby><cites>FETCH-LOGICAL-c306t-d402052a44fa27a5fa555468eed5aaff729a173739482d410bc7c3114223e7423</cites><orcidid>0000-0002-2276-9553 ; 0000-0002-9992-825X ; 0000-0001-5797-4189 ; 0000-0002-4688-7060 ; 0000-0002-8498-0928 ; 0000-0003-3344-687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matcom.2021.07.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,39265,46002</link.rule.ids></links><search><creatorcontrib>Attene, Marco</creatorcontrib><creatorcontrib>Biasotti, Silvia</creatorcontrib><creatorcontrib>Bertoluzza, Silvia</creatorcontrib><creatorcontrib>Cabiddu, Daniela</creatorcontrib><creatorcontrib>Livesu, Marco</creatorcontrib><creatorcontrib>Patanè, Giuseppe</creatorcontrib><creatorcontrib>Pennacchio, Micol</creatorcontrib><creatorcontrib>Prada, Daniele</creatorcontrib><creatorcontrib>Spagnuolo, Michela</creatorcontrib><title>Benchmarking the geometrical robustness of a Virtual Element Poisson solver</title><title>Mathematics and computers in simulation</title><addtitle>MATH COMPUT SIMULAT</addtitle><description>Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh and the performances of the solver are well known, the characterization of a good polytopal element is still subject to ongoing research. Current shape regularity criteria are quite restrictive, and greatly limit the set of valid meshes. Nevertheless, numerical experiments revealed that PEM solvers can perform well on meshes that are far outside the strict boundaries imposed by the current theory, suggesting that the real capabilities of these methods are much higher. In this work, we propose a benchmark to study the correlation between general 2D polygonal meshes and PEM solvers which we test on a virtual element solver for the Poisson equation. The benchmark aims to explore the space of 2D polygonal meshes and polygonal quality metrics, in order to understand if and how shape regularity, defined according to different criteria, affects the performance of the method. The proposed tool is quite general, and can be potentially used to study any PEM solver. Besides discussing the basics of the benchmark, we demonstrate its application on a representative member of the PEM family, namely the Virtual Element Method, also discussing our findings.</description><subject>Computer Science</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Computer Science, Software Engineering</subject><subject>Geometric metrics</subject><subject>Geometry-PEM correlation</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Physical Sciences</subject><subject>Polygonal meshes</subject><subject>Polytopal Element Methods</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Virtual Element Methods</subject><issn>0378-4754</issn><issn>1872-7166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1PwzAMhiMEEmPwDzj0jlqcNG3aCxJUfIlJcACuUZa6W0bboCQb4t-TaRNHxMmW9T6W_RByTiGjQMvLVTaooO2QMWA0A5EBrQ7IhFaCpYKW5SGZQC6qlIuCH5MT71cAEPtiQp5ucNTLQbkPMy6SsMRkgXbA4IxWfeLsfO3DiN4ntktU8m5cWMf5bY8DjiF5scZ7Oybe9ht0p-SoU73Hs32dkre729fmIZ093z8217NU51CGtOXAoGCK804xoYpOFUXBywqxLZTqOsFqRUUu8ppXrOUU5lronFLOWI6Cs3xK-G6vdtZ7h538dCa-8C0pyK0QuZI7IXIrRIKQUUjELnbYF85t57WJn-MvGo2UNVRC1LBtY7r6f7oxQQVjx8auxxDRqx2KUcLGoJN7vDUOdZCtNX9f-gMKRoxo</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Attene, Marco</creator><creator>Biasotti, Silvia</creator><creator>Bertoluzza, Silvia</creator><creator>Cabiddu, Daniela</creator><creator>Livesu, Marco</creator><creator>Patanè, Giuseppe</creator><creator>Pennacchio, Micol</creator><creator>Prada, Daniele</creator><creator>Spagnuolo, Michela</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2276-9553</orcidid><orcidid>https://orcid.org/0000-0002-9992-825X</orcidid><orcidid>https://orcid.org/0000-0001-5797-4189</orcidid><orcidid>https://orcid.org/0000-0002-4688-7060</orcidid><orcidid>https://orcid.org/0000-0002-8498-0928</orcidid><orcidid>https://orcid.org/0000-0003-3344-687X</orcidid></search><sort><creationdate>202112</creationdate><title>Benchmarking the geometrical robustness of a Virtual Element Poisson solver</title><author>Attene, Marco ; Biasotti, Silvia ; Bertoluzza, Silvia ; Cabiddu, Daniela ; Livesu, Marco ; Patanè, Giuseppe ; Pennacchio, Micol ; Prada, Daniele ; Spagnuolo, Michela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-d402052a44fa27a5fa555468eed5aaff729a173739482d410bc7c3114223e7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Computer Science, Software Engineering</topic><topic>Geometric metrics</topic><topic>Geometry-PEM correlation</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Physical Sciences</topic><topic>Polygonal meshes</topic><topic>Polytopal Element Methods</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Virtual Element Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attene, Marco</creatorcontrib><creatorcontrib>Biasotti, Silvia</creatorcontrib><creatorcontrib>Bertoluzza, Silvia</creatorcontrib><creatorcontrib>Cabiddu, Daniela</creatorcontrib><creatorcontrib>Livesu, Marco</creatorcontrib><creatorcontrib>Patanè, Giuseppe</creatorcontrib><creatorcontrib>Pennacchio, Micol</creatorcontrib><creatorcontrib>Prada, Daniele</creatorcontrib><creatorcontrib>Spagnuolo, Michela</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Mathematics and computers in simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attene, Marco</au><au>Biasotti, Silvia</au><au>Bertoluzza, Silvia</au><au>Cabiddu, Daniela</au><au>Livesu, Marco</au><au>Patanè, Giuseppe</au><au>Pennacchio, Micol</au><au>Prada, Daniele</au><au>Spagnuolo, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking the geometrical robustness of a Virtual Element Poisson solver</atitle><jtitle>Mathematics and computers in simulation</jtitle><stitle>MATH COMPUT SIMULAT</stitle><date>2021-12</date><risdate>2021</risdate><volume>190</volume><spage>1392</spage><epage>1414</epage><pages>1392-1414</pages><issn>0378-4754</issn><eissn>1872-7166</eissn><abstract>Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh and the performances of the solver are well known, the characterization of a good polytopal element is still subject to ongoing research. Current shape regularity criteria are quite restrictive, and greatly limit the set of valid meshes. Nevertheless, numerical experiments revealed that PEM solvers can perform well on meshes that are far outside the strict boundaries imposed by the current theory, suggesting that the real capabilities of these methods are much higher. In this work, we propose a benchmark to study the correlation between general 2D polygonal meshes and PEM solvers which we test on a virtual element solver for the Poisson equation. The benchmark aims to explore the space of 2D polygonal meshes and polygonal quality metrics, in order to understand if and how shape regularity, defined according to different criteria, affects the performance of the method. The proposed tool is quite general, and can be potentially used to study any PEM solver. Besides discussing the basics of the benchmark, we demonstrate its application on a representative member of the PEM family, namely the Virtual Element Method, also discussing our findings.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matcom.2021.07.018</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2276-9553</orcidid><orcidid>https://orcid.org/0000-0002-9992-825X</orcidid><orcidid>https://orcid.org/0000-0001-5797-4189</orcidid><orcidid>https://orcid.org/0000-0002-4688-7060</orcidid><orcidid>https://orcid.org/0000-0002-8498-0928</orcidid><orcidid>https://orcid.org/0000-0003-3344-687X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-4754
ispartof Mathematics and computers in simulation, 2021-12, Vol.190, p.1392-1414
issn 0378-4754
1872-7166
language eng
recordid cdi_webofscience_primary_000690877900006
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Computer Science
Computer Science, Interdisciplinary Applications
Computer Science, Software Engineering
Geometric metrics
Geometry-PEM correlation
Mathematics
Mathematics, Applied
Physical Sciences
Polygonal meshes
Polytopal Element Methods
Science & Technology
Technology
Virtual Element Methods
title Benchmarking the geometrical robustness of a Virtual Element Poisson solver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T10%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20the%20geometrical%20robustness%20of%20a%20Virtual%20Element%20Poisson%20solver&rft.jtitle=Mathematics%20and%20computers%20in%20simulation&rft.au=Attene,%20Marco&rft.date=2021-12&rft.volume=190&rft.spage=1392&rft.epage=1414&rft.pages=1392-1414&rft.issn=0378-4754&rft.eissn=1872-7166&rft_id=info:doi/10.1016/j.matcom.2021.07.018&rft_dat=%3Celsevier_webof%3ES0378475421002706%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378475421002706&rfr_iscdi=true