Benchmarking the geometrical robustness of a Virtual Element Poisson solver
Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh...
Gespeichert in:
Veröffentlicht in: | Mathematics and computers in simulation 2021-12, Vol.190, p.1392-1414 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1414 |
---|---|
container_issue | |
container_start_page | 1392 |
container_title | Mathematics and computers in simulation |
container_volume | 190 |
creator | Attene, Marco Biasotti, Silvia Bertoluzza, Silvia Cabiddu, Daniela Livesu, Marco Patanè, Giuseppe Pennacchio, Micol Prada, Daniele Spagnuolo, Michela |
description | Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh and the performances of the solver are well known, the characterization of a good polytopal element is still subject to ongoing research. Current shape regularity criteria are quite restrictive, and greatly limit the set of valid meshes. Nevertheless, numerical experiments revealed that PEM solvers can perform well on meshes that are far outside the strict boundaries imposed by the current theory, suggesting that the real capabilities of these methods are much higher. In this work, we propose a benchmark to study the correlation between general 2D polygonal meshes and PEM solvers which we test on a virtual element solver for the Poisson equation. The benchmark aims to explore the space of 2D polygonal meshes and polygonal quality metrics, in order to understand if and how shape regularity, defined according to different criteria, affects the performance of the method. The proposed tool is quite general, and can be potentially used to study any PEM solver. Besides discussing the basics of the benchmark, we demonstrate its application on a representative member of the PEM family, namely the Virtual Element Method, also discussing our findings. |
doi_str_mv | 10.1016/j.matcom.2021.07.018 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000690877900006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378475421002706</els_id><sourcerecordid>S0378475421002706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-d402052a44fa27a5fa555468eed5aaff729a173739482d410bc7c3114223e7423</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPwDzj0jlqcNG3aCxJUfIlJcACuUZa6W0bboCQb4t-TaRNHxMmW9T6W_RByTiGjQMvLVTaooO2QMWA0A5EBrQ7IhFaCpYKW5SGZQC6qlIuCH5MT71cAEPtiQp5ucNTLQbkPMy6SsMRkgXbA4IxWfeLsfO3DiN4ntktU8m5cWMf5bY8DjiF5scZ7Oybe9ht0p-SoU73Hs32dkre729fmIZ093z8217NU51CGtOXAoGCK804xoYpOFUXBywqxLZTqOsFqRUUu8ppXrOUU5lronFLOWI6Cs3xK-G6vdtZ7h538dCa-8C0pyK0QuZI7IXIrRIKQUUjELnbYF85t57WJn-MvGo2UNVRC1LBtY7r6f7oxQQVjx8auxxDRqx2KUcLGoJN7vDUOdZCtNX9f-gMKRoxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Benchmarking the geometrical robustness of a Virtual Element Poisson solver</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Attene, Marco ; Biasotti, Silvia ; Bertoluzza, Silvia ; Cabiddu, Daniela ; Livesu, Marco ; Patanè, Giuseppe ; Pennacchio, Micol ; Prada, Daniele ; Spagnuolo, Michela</creator><creatorcontrib>Attene, Marco ; Biasotti, Silvia ; Bertoluzza, Silvia ; Cabiddu, Daniela ; Livesu, Marco ; Patanè, Giuseppe ; Pennacchio, Micol ; Prada, Daniele ; Spagnuolo, Michela</creatorcontrib><description>Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh and the performances of the solver are well known, the characterization of a good polytopal element is still subject to ongoing research. Current shape regularity criteria are quite restrictive, and greatly limit the set of valid meshes. Nevertheless, numerical experiments revealed that PEM solvers can perform well on meshes that are far outside the strict boundaries imposed by the current theory, suggesting that the real capabilities of these methods are much higher. In this work, we propose a benchmark to study the correlation between general 2D polygonal meshes and PEM solvers which we test on a virtual element solver for the Poisson equation. The benchmark aims to explore the space of 2D polygonal meshes and polygonal quality metrics, in order to understand if and how shape regularity, defined according to different criteria, affects the performance of the method. The proposed tool is quite general, and can be potentially used to study any PEM solver. Besides discussing the basics of the benchmark, we demonstrate its application on a representative member of the PEM family, namely the Virtual Element Method, also discussing our findings.</description><identifier>ISSN: 0378-4754</identifier><identifier>EISSN: 1872-7166</identifier><identifier>DOI: 10.1016/j.matcom.2021.07.018</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Computer Science ; Computer Science, Interdisciplinary Applications ; Computer Science, Software Engineering ; Geometric metrics ; Geometry-PEM correlation ; Mathematics ; Mathematics, Applied ; Physical Sciences ; Polygonal meshes ; Polytopal Element Methods ; Science & Technology ; Technology ; Virtual Element Methods</subject><ispartof>Mathematics and computers in simulation, 2021-12, Vol.190, p.1392-1414</ispartof><rights>2021 International Association for Mathematics and Computers in Simulation (IMACS)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000690877900006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c306t-d402052a44fa27a5fa555468eed5aaff729a173739482d410bc7c3114223e7423</citedby><cites>FETCH-LOGICAL-c306t-d402052a44fa27a5fa555468eed5aaff729a173739482d410bc7c3114223e7423</cites><orcidid>0000-0002-2276-9553 ; 0000-0002-9992-825X ; 0000-0001-5797-4189 ; 0000-0002-4688-7060 ; 0000-0002-8498-0928 ; 0000-0003-3344-687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matcom.2021.07.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,39265,46002</link.rule.ids></links><search><creatorcontrib>Attene, Marco</creatorcontrib><creatorcontrib>Biasotti, Silvia</creatorcontrib><creatorcontrib>Bertoluzza, Silvia</creatorcontrib><creatorcontrib>Cabiddu, Daniela</creatorcontrib><creatorcontrib>Livesu, Marco</creatorcontrib><creatorcontrib>Patanè, Giuseppe</creatorcontrib><creatorcontrib>Pennacchio, Micol</creatorcontrib><creatorcontrib>Prada, Daniele</creatorcontrib><creatorcontrib>Spagnuolo, Michela</creatorcontrib><title>Benchmarking the geometrical robustness of a Virtual Element Poisson solver</title><title>Mathematics and computers in simulation</title><addtitle>MATH COMPUT SIMULAT</addtitle><description>Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh and the performances of the solver are well known, the characterization of a good polytopal element is still subject to ongoing research. Current shape regularity criteria are quite restrictive, and greatly limit the set of valid meshes. Nevertheless, numerical experiments revealed that PEM solvers can perform well on meshes that are far outside the strict boundaries imposed by the current theory, suggesting that the real capabilities of these methods are much higher. In this work, we propose a benchmark to study the correlation between general 2D polygonal meshes and PEM solvers which we test on a virtual element solver for the Poisson equation. The benchmark aims to explore the space of 2D polygonal meshes and polygonal quality metrics, in order to understand if and how shape regularity, defined according to different criteria, affects the performance of the method. The proposed tool is quite general, and can be potentially used to study any PEM solver. Besides discussing the basics of the benchmark, we demonstrate its application on a representative member of the PEM family, namely the Virtual Element Method, also discussing our findings.</description><subject>Computer Science</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Computer Science, Software Engineering</subject><subject>Geometric metrics</subject><subject>Geometry-PEM correlation</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Physical Sciences</subject><subject>Polygonal meshes</subject><subject>Polytopal Element Methods</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Virtual Element Methods</subject><issn>0378-4754</issn><issn>1872-7166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1PwzAMhiMEEmPwDzj0jlqcNG3aCxJUfIlJcACuUZa6W0bboCQb4t-TaRNHxMmW9T6W_RByTiGjQMvLVTaooO2QMWA0A5EBrQ7IhFaCpYKW5SGZQC6qlIuCH5MT71cAEPtiQp5ucNTLQbkPMy6SsMRkgXbA4IxWfeLsfO3DiN4ntktU8m5cWMf5bY8DjiF5scZ7Oybe9ht0p-SoU73Hs32dkre729fmIZ093z8217NU51CGtOXAoGCK804xoYpOFUXBywqxLZTqOsFqRUUu8ppXrOUU5lronFLOWI6Cs3xK-G6vdtZ7h538dCa-8C0pyK0QuZI7IXIrRIKQUUjELnbYF85t57WJn-MvGo2UNVRC1LBtY7r6f7oxQQVjx8auxxDRqx2KUcLGoJN7vDUOdZCtNX9f-gMKRoxo</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Attene, Marco</creator><creator>Biasotti, Silvia</creator><creator>Bertoluzza, Silvia</creator><creator>Cabiddu, Daniela</creator><creator>Livesu, Marco</creator><creator>Patanè, Giuseppe</creator><creator>Pennacchio, Micol</creator><creator>Prada, Daniele</creator><creator>Spagnuolo, Michela</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2276-9553</orcidid><orcidid>https://orcid.org/0000-0002-9992-825X</orcidid><orcidid>https://orcid.org/0000-0001-5797-4189</orcidid><orcidid>https://orcid.org/0000-0002-4688-7060</orcidid><orcidid>https://orcid.org/0000-0002-8498-0928</orcidid><orcidid>https://orcid.org/0000-0003-3344-687X</orcidid></search><sort><creationdate>202112</creationdate><title>Benchmarking the geometrical robustness of a Virtual Element Poisson solver</title><author>Attene, Marco ; Biasotti, Silvia ; Bertoluzza, Silvia ; Cabiddu, Daniela ; Livesu, Marco ; Patanè, Giuseppe ; Pennacchio, Micol ; Prada, Daniele ; Spagnuolo, Michela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-d402052a44fa27a5fa555468eed5aaff729a173739482d410bc7c3114223e7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Computer Science, Software Engineering</topic><topic>Geometric metrics</topic><topic>Geometry-PEM correlation</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Physical Sciences</topic><topic>Polygonal meshes</topic><topic>Polytopal Element Methods</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Virtual Element Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attene, Marco</creatorcontrib><creatorcontrib>Biasotti, Silvia</creatorcontrib><creatorcontrib>Bertoluzza, Silvia</creatorcontrib><creatorcontrib>Cabiddu, Daniela</creatorcontrib><creatorcontrib>Livesu, Marco</creatorcontrib><creatorcontrib>Patanè, Giuseppe</creatorcontrib><creatorcontrib>Pennacchio, Micol</creatorcontrib><creatorcontrib>Prada, Daniele</creatorcontrib><creatorcontrib>Spagnuolo, Michela</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Mathematics and computers in simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attene, Marco</au><au>Biasotti, Silvia</au><au>Bertoluzza, Silvia</au><au>Cabiddu, Daniela</au><au>Livesu, Marco</au><au>Patanè, Giuseppe</au><au>Pennacchio, Micol</au><au>Prada, Daniele</au><au>Spagnuolo, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking the geometrical robustness of a Virtual Element Poisson solver</atitle><jtitle>Mathematics and computers in simulation</jtitle><stitle>MATH COMPUT SIMULAT</stitle><date>2021-12</date><risdate>2021</risdate><volume>190</volume><spage>1392</spage><epage>1414</epage><pages>1392-1414</pages><issn>0378-4754</issn><eissn>1872-7166</eissn><abstract>Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh and the performances of the solver are well known, the characterization of a good polytopal element is still subject to ongoing research. Current shape regularity criteria are quite restrictive, and greatly limit the set of valid meshes. Nevertheless, numerical experiments revealed that PEM solvers can perform well on meshes that are far outside the strict boundaries imposed by the current theory, suggesting that the real capabilities of these methods are much higher. In this work, we propose a benchmark to study the correlation between general 2D polygonal meshes and PEM solvers which we test on a virtual element solver for the Poisson equation. The benchmark aims to explore the space of 2D polygonal meshes and polygonal quality metrics, in order to understand if and how shape regularity, defined according to different criteria, affects the performance of the method. The proposed tool is quite general, and can be potentially used to study any PEM solver. Besides discussing the basics of the benchmark, we demonstrate its application on a representative member of the PEM family, namely the Virtual Element Method, also discussing our findings.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matcom.2021.07.018</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2276-9553</orcidid><orcidid>https://orcid.org/0000-0002-9992-825X</orcidid><orcidid>https://orcid.org/0000-0001-5797-4189</orcidid><orcidid>https://orcid.org/0000-0002-4688-7060</orcidid><orcidid>https://orcid.org/0000-0002-8498-0928</orcidid><orcidid>https://orcid.org/0000-0003-3344-687X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-4754 |
ispartof | Mathematics and computers in simulation, 2021-12, Vol.190, p.1392-1414 |
issn | 0378-4754 1872-7166 |
language | eng |
recordid | cdi_webofscience_primary_000690877900006 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Computer Science Computer Science, Interdisciplinary Applications Computer Science, Software Engineering Geometric metrics Geometry-PEM correlation Mathematics Mathematics, Applied Physical Sciences Polygonal meshes Polytopal Element Methods Science & Technology Technology Virtual Element Methods |
title | Benchmarking the geometrical robustness of a Virtual Element Poisson solver |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T09%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20the%20geometrical%20robustness%20of%20a%20Virtual%20Element%20Poisson%20solver&rft.jtitle=Mathematics%20and%20computers%20in%20simulation&rft.au=Attene,%20Marco&rft.date=2021-12&rft.volume=190&rft.spage=1392&rft.epage=1414&rft.pages=1392-1414&rft.issn=0378-4754&rft.eissn=1872-7166&rft_id=info:doi/10.1016/j.matcom.2021.07.018&rft_dat=%3Celsevier_webof%3ES0378475421002706%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378475421002706&rfr_iscdi=true |