Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis

Developing highly efficient photocatalysts for artificial photosynthesis is one of the grand challenges in solar energy conversion. Among advanced photoactive materials, conjugated porous polymers (CPPs) possess a powerful combination of high surface areas, intrinsic porosity, cross‐linked nature, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-12, Vol.31 (51), p.n/a
Hauptverfasser: Collado, Laura, Naranjo, Teresa, Gomez‐Mendoza, Miguel, López‐Calixto, Carmen G., Oropeza, Freddy E., Liras, Marta, Marugán, Javier, Peña O'Shea, Víctor A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 51
container_start_page
container_title Advanced functional materials
container_volume 31
creator Collado, Laura
Naranjo, Teresa
Gomez‐Mendoza, Miguel
López‐Calixto, Carmen G.
Oropeza, Freddy E.
Liras, Marta
Marugán, Javier
Peña O'Shea, Víctor A.
description Developing highly efficient photocatalysts for artificial photosynthesis is one of the grand challenges in solar energy conversion. Among advanced photoactive materials, conjugated porous polymers (CPPs) possess a powerful combination of high surface areas, intrinsic porosity, cross‐linked nature, and fully π‐conjugated electronic systems. Here, based on these fascinating properties, organic–inorganic hybrid heterostructures composed of CPPs and TiO2 for the photocatalytic CO2 reduction and H2 evolution from water are developed. The study is focused on CPPs based on the boron dipyrromethene (BODIPY) and boron pyrrol hydrazine (BOPHY) families of compounds. It is shown that hybrid photocatalysts are active for the conversion of CO2 mainly into CH4 and CO, with CH4 production 4 times over the benchmark TiO2. Hydrogen evolution from water surpassed by 37.9‐times that of TiO2, reaching 200 mmol gcat−1 and photonic efficiency of 20.4% in the presence of Pt co‐catalyst (1 wt% Pt). Advanced photophysical studies, based on time‐resolved photoluminescence and transient absorption spectroscopy, reveal the creation of a type II heterojunction in the hybrids. The unique interfacial interaction between CPPs and TiO2 results in longer carriers’ lifetimes and a higher driving force for electron transfer, opening the door to a new generation of photocatalysts for artificial photosynthesis. Artificial photosynthesis is a challenging energy solution for the conversion of sunlight into solar fuels. Hybrid heterostructures, composed of conjugated porous polymers and TiO2, show remarkable photoactivity toward CO2 photoreduction and H2 evolution from water. Photophysical studies reveal the creation of a type II heterojunction that leads to longer carrier lifetimes and a higher driving force for electron transfer in artificial photosynthesis.
doi_str_mv 10.1002/adfm.202105384
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610697115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610697115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-35c87c5eb1af922408d13e637c2be609aafe5014d245f2de339c3d54d9b903613</originalsourceid><addsrcrecordid>eNqFkM9LwzAcxYMoOKdXzwHPnfnR9MdxP5wdTNaDgjuFNEldStdsSYv0v7djMo-e3uPL570vPAAeMZpghMizUOV-QhDBiNEkvAIjHOEooIgk1xePP2_BnfcVQjiOaTgCx7ltqu5LtFrB3Drb-UHqfq-dhzPhh6tt4GyzWOVbKBo12DzbwkWvPTQNzPrCGQUz3Wpnq66RrbGNh6V1cOpaUxppRA3znW2t75t2p73x9-CmFLXXD786Bh_Ll_d5Fqw3r6v5dB1IyuIwoEwmsWS6wKJMCQlRojDVEY0lKXSEUiFKzRAOFQlZSZSmNJVUsVClRYpohOkYPJ17D84eO-1bXtnONcNLTiKMojTGmA3U5ExJZ713uuQHZ_bC9RwjfpqVn2bll1mHQHoOfJta9__QfLpYvv1lfwBM9Hvm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610697115</pqid></control><display><type>article</type><title>Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis</title><source>Wiley Online Library All Journals</source><creator>Collado, Laura ; Naranjo, Teresa ; Gomez‐Mendoza, Miguel ; López‐Calixto, Carmen G. ; Oropeza, Freddy E. ; Liras, Marta ; Marugán, Javier ; Peña O'Shea, Víctor A.</creator><creatorcontrib>Collado, Laura ; Naranjo, Teresa ; Gomez‐Mendoza, Miguel ; López‐Calixto, Carmen G. ; Oropeza, Freddy E. ; Liras, Marta ; Marugán, Javier ; Peña O'Shea, Víctor A.</creatorcontrib><description>Developing highly efficient photocatalysts for artificial photosynthesis is one of the grand challenges in solar energy conversion. Among advanced photoactive materials, conjugated porous polymers (CPPs) possess a powerful combination of high surface areas, intrinsic porosity, cross‐linked nature, and fully π‐conjugated electronic systems. Here, based on these fascinating properties, organic–inorganic hybrid heterostructures composed of CPPs and TiO2 for the photocatalytic CO2 reduction and H2 evolution from water are developed. The study is focused on CPPs based on the boron dipyrromethene (BODIPY) and boron pyrrol hydrazine (BOPHY) families of compounds. It is shown that hybrid photocatalysts are active for the conversion of CO2 mainly into CH4 and CO, with CH4 production 4 times over the benchmark TiO2. Hydrogen evolution from water surpassed by 37.9‐times that of TiO2, reaching 200 mmol gcat−1 and photonic efficiency of 20.4% in the presence of Pt co‐catalyst (1 wt% Pt). Advanced photophysical studies, based on time‐resolved photoluminescence and transient absorption spectroscopy, reveal the creation of a type II heterojunction in the hybrids. The unique interfacial interaction between CPPs and TiO2 results in longer carriers’ lifetimes and a higher driving force for electron transfer, opening the door to a new generation of photocatalysts for artificial photosynthesis. Artificial photosynthesis is a challenging energy solution for the conversion of sunlight into solar fuels. Hybrid heterostructures, composed of conjugated porous polymers and TiO2, show remarkable photoactivity toward CO2 photoreduction and H2 evolution from water. Photophysical studies reveal the creation of a type II heterojunction that leads to longer carrier lifetimes and a higher driving force for electron transfer in artificial photosynthesis.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202105384</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>artificial photosynthesis ; Boron ; Carbon dioxide ; charge dynamics ; conjugated porous polymers ; Electron transfer ; Electronic systems ; Heterojunctions ; Heterostructures ; hybrid heterostructures ; Hydrazines ; Hydrogen evolution ; Materials science ; Methane ; Photocatalysis ; Photocatalysts ; Photoluminescence ; Photosynthesis ; Polymers ; Porous materials ; Solar energy conversion ; solar fuels ; Titanium dioxide ; transient absorption spectroscopy</subject><ispartof>Advanced functional materials, 2021-12, Vol.31 (51), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-35c87c5eb1af922408d13e637c2be609aafe5014d245f2de339c3d54d9b903613</citedby><cites>FETCH-LOGICAL-c3574-35c87c5eb1af922408d13e637c2be609aafe5014d245f2de339c3d54d9b903613</cites><orcidid>0000-0002-2604-3733 ; 0000-0001-7222-9603 ; 0000-0003-1195-462X ; 0000-0001-5762-4787 ; 0000-0002-2771-9563 ; 0000-0002-1724-1586 ; 0000-0001-6370-9998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202105384$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202105384$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Collado, Laura</creatorcontrib><creatorcontrib>Naranjo, Teresa</creatorcontrib><creatorcontrib>Gomez‐Mendoza, Miguel</creatorcontrib><creatorcontrib>López‐Calixto, Carmen G.</creatorcontrib><creatorcontrib>Oropeza, Freddy E.</creatorcontrib><creatorcontrib>Liras, Marta</creatorcontrib><creatorcontrib>Marugán, Javier</creatorcontrib><creatorcontrib>Peña O'Shea, Víctor A.</creatorcontrib><title>Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis</title><title>Advanced functional materials</title><description>Developing highly efficient photocatalysts for artificial photosynthesis is one of the grand challenges in solar energy conversion. Among advanced photoactive materials, conjugated porous polymers (CPPs) possess a powerful combination of high surface areas, intrinsic porosity, cross‐linked nature, and fully π‐conjugated electronic systems. Here, based on these fascinating properties, organic–inorganic hybrid heterostructures composed of CPPs and TiO2 for the photocatalytic CO2 reduction and H2 evolution from water are developed. The study is focused on CPPs based on the boron dipyrromethene (BODIPY) and boron pyrrol hydrazine (BOPHY) families of compounds. It is shown that hybrid photocatalysts are active for the conversion of CO2 mainly into CH4 and CO, with CH4 production 4 times over the benchmark TiO2. Hydrogen evolution from water surpassed by 37.9‐times that of TiO2, reaching 200 mmol gcat−1 and photonic efficiency of 20.4% in the presence of Pt co‐catalyst (1 wt% Pt). Advanced photophysical studies, based on time‐resolved photoluminescence and transient absorption spectroscopy, reveal the creation of a type II heterojunction in the hybrids. The unique interfacial interaction between CPPs and TiO2 results in longer carriers’ lifetimes and a higher driving force for electron transfer, opening the door to a new generation of photocatalysts for artificial photosynthesis. Artificial photosynthesis is a challenging energy solution for the conversion of sunlight into solar fuels. Hybrid heterostructures, composed of conjugated porous polymers and TiO2, show remarkable photoactivity toward CO2 photoreduction and H2 evolution from water. Photophysical studies reveal the creation of a type II heterojunction that leads to longer carrier lifetimes and a higher driving force for electron transfer in artificial photosynthesis.</description><subject>artificial photosynthesis</subject><subject>Boron</subject><subject>Carbon dioxide</subject><subject>charge dynamics</subject><subject>conjugated porous polymers</subject><subject>Electron transfer</subject><subject>Electronic systems</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>hybrid heterostructures</subject><subject>Hydrazines</subject><subject>Hydrogen evolution</subject><subject>Materials science</subject><subject>Methane</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photoluminescence</subject><subject>Photosynthesis</subject><subject>Polymers</subject><subject>Porous materials</subject><subject>Solar energy conversion</subject><subject>solar fuels</subject><subject>Titanium dioxide</subject><subject>transient absorption spectroscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM9LwzAcxYMoOKdXzwHPnfnR9MdxP5wdTNaDgjuFNEldStdsSYv0v7djMo-e3uPL570vPAAeMZpghMizUOV-QhDBiNEkvAIjHOEooIgk1xePP2_BnfcVQjiOaTgCx7ltqu5LtFrB3Drb-UHqfq-dhzPhh6tt4GyzWOVbKBo12DzbwkWvPTQNzPrCGQUz3Wpnq66RrbGNh6V1cOpaUxppRA3znW2t75t2p73x9-CmFLXXD786Bh_Ll_d5Fqw3r6v5dB1IyuIwoEwmsWS6wKJMCQlRojDVEY0lKXSEUiFKzRAOFQlZSZSmNJVUsVClRYpohOkYPJ17D84eO-1bXtnONcNLTiKMojTGmA3U5ExJZ713uuQHZ_bC9RwjfpqVn2bll1mHQHoOfJta9__QfLpYvv1lfwBM9Hvm</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Collado, Laura</creator><creator>Naranjo, Teresa</creator><creator>Gomez‐Mendoza, Miguel</creator><creator>López‐Calixto, Carmen G.</creator><creator>Oropeza, Freddy E.</creator><creator>Liras, Marta</creator><creator>Marugán, Javier</creator><creator>Peña O'Shea, Víctor A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2604-3733</orcidid><orcidid>https://orcid.org/0000-0001-7222-9603</orcidid><orcidid>https://orcid.org/0000-0003-1195-462X</orcidid><orcidid>https://orcid.org/0000-0001-5762-4787</orcidid><orcidid>https://orcid.org/0000-0002-2771-9563</orcidid><orcidid>https://orcid.org/0000-0002-1724-1586</orcidid><orcidid>https://orcid.org/0000-0001-6370-9998</orcidid></search><sort><creationdate>20211201</creationdate><title>Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis</title><author>Collado, Laura ; Naranjo, Teresa ; Gomez‐Mendoza, Miguel ; López‐Calixto, Carmen G. ; Oropeza, Freddy E. ; Liras, Marta ; Marugán, Javier ; Peña O'Shea, Víctor A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-35c87c5eb1af922408d13e637c2be609aafe5014d245f2de339c3d54d9b903613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial photosynthesis</topic><topic>Boron</topic><topic>Carbon dioxide</topic><topic>charge dynamics</topic><topic>conjugated porous polymers</topic><topic>Electron transfer</topic><topic>Electronic systems</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>hybrid heterostructures</topic><topic>Hydrazines</topic><topic>Hydrogen evolution</topic><topic>Materials science</topic><topic>Methane</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photoluminescence</topic><topic>Photosynthesis</topic><topic>Polymers</topic><topic>Porous materials</topic><topic>Solar energy conversion</topic><topic>solar fuels</topic><topic>Titanium dioxide</topic><topic>transient absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collado, Laura</creatorcontrib><creatorcontrib>Naranjo, Teresa</creatorcontrib><creatorcontrib>Gomez‐Mendoza, Miguel</creatorcontrib><creatorcontrib>López‐Calixto, Carmen G.</creatorcontrib><creatorcontrib>Oropeza, Freddy E.</creatorcontrib><creatorcontrib>Liras, Marta</creatorcontrib><creatorcontrib>Marugán, Javier</creatorcontrib><creatorcontrib>Peña O'Shea, Víctor A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collado, Laura</au><au>Naranjo, Teresa</au><au>Gomez‐Mendoza, Miguel</au><au>López‐Calixto, Carmen G.</au><au>Oropeza, Freddy E.</au><au>Liras, Marta</au><au>Marugán, Javier</au><au>Peña O'Shea, Víctor A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis</atitle><jtitle>Advanced functional materials</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>31</volume><issue>51</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Developing highly efficient photocatalysts for artificial photosynthesis is one of the grand challenges in solar energy conversion. Among advanced photoactive materials, conjugated porous polymers (CPPs) possess a powerful combination of high surface areas, intrinsic porosity, cross‐linked nature, and fully π‐conjugated electronic systems. Here, based on these fascinating properties, organic–inorganic hybrid heterostructures composed of CPPs and TiO2 for the photocatalytic CO2 reduction and H2 evolution from water are developed. The study is focused on CPPs based on the boron dipyrromethene (BODIPY) and boron pyrrol hydrazine (BOPHY) families of compounds. It is shown that hybrid photocatalysts are active for the conversion of CO2 mainly into CH4 and CO, with CH4 production 4 times over the benchmark TiO2. Hydrogen evolution from water surpassed by 37.9‐times that of TiO2, reaching 200 mmol gcat−1 and photonic efficiency of 20.4% in the presence of Pt co‐catalyst (1 wt% Pt). Advanced photophysical studies, based on time‐resolved photoluminescence and transient absorption spectroscopy, reveal the creation of a type II heterojunction in the hybrids. The unique interfacial interaction between CPPs and TiO2 results in longer carriers’ lifetimes and a higher driving force for electron transfer, opening the door to a new generation of photocatalysts for artificial photosynthesis. Artificial photosynthesis is a challenging energy solution for the conversion of sunlight into solar fuels. Hybrid heterostructures, composed of conjugated porous polymers and TiO2, show remarkable photoactivity toward CO2 photoreduction and H2 evolution from water. Photophysical studies reveal the creation of a type II heterojunction that leads to longer carrier lifetimes and a higher driving force for electron transfer in artificial photosynthesis.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202105384</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2604-3733</orcidid><orcidid>https://orcid.org/0000-0001-7222-9603</orcidid><orcidid>https://orcid.org/0000-0003-1195-462X</orcidid><orcidid>https://orcid.org/0000-0001-5762-4787</orcidid><orcidid>https://orcid.org/0000-0002-2771-9563</orcidid><orcidid>https://orcid.org/0000-0002-1724-1586</orcidid><orcidid>https://orcid.org/0000-0001-6370-9998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-12, Vol.31 (51), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2610697115
source Wiley Online Library All Journals
subjects artificial photosynthesis
Boron
Carbon dioxide
charge dynamics
conjugated porous polymers
Electron transfer
Electronic systems
Heterojunctions
Heterostructures
hybrid heterostructures
Hydrazines
Hydrogen evolution
Materials science
Methane
Photocatalysis
Photocatalysts
Photoluminescence
Photosynthesis
Polymers
Porous materials
Solar energy conversion
solar fuels
Titanium dioxide
transient absorption spectroscopy
title Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugated%20Porous%20Polymers%20Based%20on%20BODIPY%20and%20BOPHY%20Dyes%20in%20Hybrid%20Heterojunctions%20for%20Artificial%20Photosynthesis&rft.jtitle=Advanced%20functional%20materials&rft.au=Collado,%20Laura&rft.date=2021-12-01&rft.volume=31&rft.issue=51&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202105384&rft_dat=%3Cproquest_cross%3E2610697115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610697115&rft_id=info:pmid/&rfr_iscdi=true