Nano-Particles Carried by Multiple Dynein Motors Self-Regulate Their Number of Actively Participating Motors

Intra-cellular active transport by native cargos is ubiquitous. We investigate the motion of spherical nano-particles (NPs) grafted with flexible polymers that end with a nuclear localization signal peptide. This peptide allows the recruitment of several mammalian dynein motors from cytoplasmic extr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-08, Vol.22 (16), p.8893, Article 8893
Hauptverfasser: Halbi, Gal, Fayer, Itay, Aranovich, Dina, Gat, Shachar, Bar, Shay, Erukhimovitch, Vitaly, Granek, Rony, Bernheim-Groswasser, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 8893
container_title International journal of molecular sciences
container_volume 22
creator Halbi, Gal
Fayer, Itay
Aranovich, Dina
Gat, Shachar
Bar, Shay
Erukhimovitch, Vitaly
Granek, Rony
Bernheim-Groswasser, Anne
description Intra-cellular active transport by native cargos is ubiquitous. We investigate the motion of spherical nano-particles (NPs) grafted with flexible polymers that end with a nuclear localization signal peptide. This peptide allows the recruitment of several mammalian dynein motors from cytoplasmic extracts. To determine how motor-motor interactions influenced motility on the single microtubule level, we conducted bead-motility assays incorporating surface adsorbed microtubules and combined them with model simulations that were based on the properties of a single dynein. The experimental and simulation results revealed long time trajectories: when the number of NP-ligated motors N-m increased, run-times and run-lengths were enhanced and mean velocities were somewhat decreased. Moreover, the dependence of the velocity on run-time followed a universal curve, regardless of the system composition. Model simulations also demonstrated left- and right-handed helical motion and revealed self-regulation of the number of microtubule-bound, actively transporting dynein motors. This number was stochastic along trajectories and was distributed mainly between one, two, and three motors, regardless of N-m. We propose that this self-regulation allows our synthetic NPs to achieve persistent motion that is associated with major helicity. Such a helical motion might affect obstacle bypassing, which can influence active transport efficiency when facing the crowded environment of the cell.
doi_str_mv 10.3390/ijms22168893
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000690520800001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9a72e0f13b914406b3fcf6eedea6ab14</doaj_id><sourcerecordid>2624241635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-e0b116a180fb392b5cc915b54a65235c6d105ce09a94444d8a6b7b538d63e5993</originalsourceid><addsrcrecordid>eNqNkktvEzEUhUcIRKGw4wdYYoMEA35nvEGqwqtSWxCUtWV77qSOHDvYnqL8e1wSVS0rVr7yPefTufbtuhcEv2VM4Xd-vSmUEjkMij3onhBOaY-xXDy8Ux91T0tZY0wZFepxd8Q450Ko4UkXLkxM_TeTq3cBClqanD2MyO7Q-Ryq3wZAH3YRfETnqaZc0A8IU_8dVnMwFdDlFfiMLuaNhYzShE5c9dcQdmiP9FtTfVwdvM-6R5MJBZ4fzuPu56ePl8sv_dnXz6fLk7PetVS1B2wJkYYMeLJMUSucU0RYwY0UlAknR4KFA6yManPwcTDSLqxgwygZCKXYcXe6547JrPU2-43JO52M138vUl7pw8BamQUFPBFmFeEcS8smN0mAEYw0lvDGer9nbWe7gdFBrNmEe9D7neiv9Cpd64EpyYhsgFcHQE6_ZihVb3xxEIKJkOaiqZASc7pY3OR--Y90neYc21NpKimnvOFEU73Zq1xOpWSYbsMQrG9WQt9diSYf9vLfYNNUnIfo4NaC23ooLCgeWoXJ0tf2YSku0xxrs77-fyv7AxqwyZw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624241635</pqid></control><display><type>article</type><title>Nano-Particles Carried by Multiple Dynein Motors Self-Regulate Their Number of Actively Participating Motors</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Halbi, Gal ; Fayer, Itay ; Aranovich, Dina ; Gat, Shachar ; Bar, Shay ; Erukhimovitch, Vitaly ; Granek, Rony ; Bernheim-Groswasser, Anne</creator><creatorcontrib>Halbi, Gal ; Fayer, Itay ; Aranovich, Dina ; Gat, Shachar ; Bar, Shay ; Erukhimovitch, Vitaly ; Granek, Rony ; Bernheim-Groswasser, Anne</creatorcontrib><description>Intra-cellular active transport by native cargos is ubiquitous. We investigate the motion of spherical nano-particles (NPs) grafted with flexible polymers that end with a nuclear localization signal peptide. This peptide allows the recruitment of several mammalian dynein motors from cytoplasmic extracts. To determine how motor-motor interactions influenced motility on the single microtubule level, we conducted bead-motility assays incorporating surface adsorbed microtubules and combined them with model simulations that were based on the properties of a single dynein. The experimental and simulation results revealed long time trajectories: when the number of NP-ligated motors N-m increased, run-times and run-lengths were enhanced and mean velocities were somewhat decreased. Moreover, the dependence of the velocity on run-time followed a universal curve, regardless of the system composition. Model simulations also demonstrated left- and right-handed helical motion and revealed self-regulation of the number of microtubule-bound, actively transporting dynein motors. This number was stochastic along trajectories and was distributed mainly between one, two, and three motors, regardless of N-m. We propose that this self-regulation allows our synthetic NPs to achieve persistent motion that is associated with major helicity. Such a helical motion might affect obstacle bypassing, which can influence active transport efficiency when facing the crowded environment of the cell.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22168893</identifier><identifier>PMID: 34445598</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Active transport ; Binding sites ; Biochemistry &amp; Molecular Biology ; Chemistry ; Chemistry, Multidisciplinary ; Dynein ; Experiments ; Handedness ; Helicity ; Life Sciences &amp; Biomedicine ; Ligands ; Localization ; Microtubules ; Monte-Carlo simulations ; Motility ; motility assays ; Motors ; multi-motor complex ; nano-particles ; Nanoparticles ; Peptides ; Physical Sciences ; Proteins ; Science &amp; Technology ; Simulation ; single particle tracking ; Stochasticity</subject><ispartof>International journal of molecular sciences, 2021-08, Vol.22 (16), p.8893, Article 8893</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000690520800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c455t-e0b116a180fb392b5cc915b54a65235c6d105ce09a94444d8a6b7b538d63e5993</citedby><cites>FETCH-LOGICAL-c455t-e0b116a180fb392b5cc915b54a65235c6d105ce09a94444d8a6b7b538d63e5993</cites><orcidid>0000-0003-3999-6098 ; 0000-0001-6839-5393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396316/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396316/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>Halbi, Gal</creatorcontrib><creatorcontrib>Fayer, Itay</creatorcontrib><creatorcontrib>Aranovich, Dina</creatorcontrib><creatorcontrib>Gat, Shachar</creatorcontrib><creatorcontrib>Bar, Shay</creatorcontrib><creatorcontrib>Erukhimovitch, Vitaly</creatorcontrib><creatorcontrib>Granek, Rony</creatorcontrib><creatorcontrib>Bernheim-Groswasser, Anne</creatorcontrib><title>Nano-Particles Carried by Multiple Dynein Motors Self-Regulate Their Number of Actively Participating Motors</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><description>Intra-cellular active transport by native cargos is ubiquitous. We investigate the motion of spherical nano-particles (NPs) grafted with flexible polymers that end with a nuclear localization signal peptide. This peptide allows the recruitment of several mammalian dynein motors from cytoplasmic extracts. To determine how motor-motor interactions influenced motility on the single microtubule level, we conducted bead-motility assays incorporating surface adsorbed microtubules and combined them with model simulations that were based on the properties of a single dynein. The experimental and simulation results revealed long time trajectories: when the number of NP-ligated motors N-m increased, run-times and run-lengths were enhanced and mean velocities were somewhat decreased. Moreover, the dependence of the velocity on run-time followed a universal curve, regardless of the system composition. Model simulations also demonstrated left- and right-handed helical motion and revealed self-regulation of the number of microtubule-bound, actively transporting dynein motors. This number was stochastic along trajectories and was distributed mainly between one, two, and three motors, regardless of N-m. We propose that this self-regulation allows our synthetic NPs to achieve persistent motion that is associated with major helicity. Such a helical motion might affect obstacle bypassing, which can influence active transport efficiency when facing the crowded environment of the cell.</description><subject>Active transport</subject><subject>Binding sites</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Dynein</subject><subject>Experiments</subject><subject>Handedness</subject><subject>Helicity</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Ligands</subject><subject>Localization</subject><subject>Microtubules</subject><subject>Monte-Carlo simulations</subject><subject>Motility</subject><subject>motility assays</subject><subject>Motors</subject><subject>multi-motor complex</subject><subject>nano-particles</subject><subject>Nanoparticles</subject><subject>Peptides</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>single particle tracking</subject><subject>Stochasticity</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktvEzEUhUcIRKGw4wdYYoMEA35nvEGqwqtSWxCUtWV77qSOHDvYnqL8e1wSVS0rVr7yPefTufbtuhcEv2VM4Xd-vSmUEjkMij3onhBOaY-xXDy8Ux91T0tZY0wZFepxd8Q450Ko4UkXLkxM_TeTq3cBClqanD2MyO7Q-Ryq3wZAH3YRfETnqaZc0A8IU_8dVnMwFdDlFfiMLuaNhYzShE5c9dcQdmiP9FtTfVwdvM-6R5MJBZ4fzuPu56ePl8sv_dnXz6fLk7PetVS1B2wJkYYMeLJMUSucU0RYwY0UlAknR4KFA6yManPwcTDSLqxgwygZCKXYcXe6547JrPU2-43JO52M138vUl7pw8BamQUFPBFmFeEcS8smN0mAEYw0lvDGer9nbWe7gdFBrNmEe9D7neiv9Cpd64EpyYhsgFcHQE6_ZihVb3xxEIKJkOaiqZASc7pY3OR--Y90neYc21NpKimnvOFEU73Zq1xOpWSYbsMQrG9WQt9diSYf9vLfYNNUnIfo4NaC23ooLCgeWoXJ0tf2YSku0xxrs77-fyv7AxqwyZw</recordid><startdate>20210818</startdate><enddate>20210818</enddate><creator>Halbi, Gal</creator><creator>Fayer, Itay</creator><creator>Aranovich, Dina</creator><creator>Gat, Shachar</creator><creator>Bar, Shay</creator><creator>Erukhimovitch, Vitaly</creator><creator>Granek, Rony</creator><creator>Bernheim-Groswasser, Anne</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3999-6098</orcidid><orcidid>https://orcid.org/0000-0001-6839-5393</orcidid></search><sort><creationdate>20210818</creationdate><title>Nano-Particles Carried by Multiple Dynein Motors Self-Regulate Their Number of Actively Participating Motors</title><author>Halbi, Gal ; Fayer, Itay ; Aranovich, Dina ; Gat, Shachar ; Bar, Shay ; Erukhimovitch, Vitaly ; Granek, Rony ; Bernheim-Groswasser, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-e0b116a180fb392b5cc915b54a65235c6d105ce09a94444d8a6b7b538d63e5993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active transport</topic><topic>Binding sites</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Dynein</topic><topic>Experiments</topic><topic>Handedness</topic><topic>Helicity</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Ligands</topic><topic>Localization</topic><topic>Microtubules</topic><topic>Monte-Carlo simulations</topic><topic>Motility</topic><topic>motility assays</topic><topic>Motors</topic><topic>multi-motor complex</topic><topic>nano-particles</topic><topic>Nanoparticles</topic><topic>Peptides</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>single particle tracking</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halbi, Gal</creatorcontrib><creatorcontrib>Fayer, Itay</creatorcontrib><creatorcontrib>Aranovich, Dina</creatorcontrib><creatorcontrib>Gat, Shachar</creatorcontrib><creatorcontrib>Bar, Shay</creatorcontrib><creatorcontrib>Erukhimovitch, Vitaly</creatorcontrib><creatorcontrib>Granek, Rony</creatorcontrib><creatorcontrib>Bernheim-Groswasser, Anne</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halbi, Gal</au><au>Fayer, Itay</au><au>Aranovich, Dina</au><au>Gat, Shachar</au><au>Bar, Shay</au><au>Erukhimovitch, Vitaly</au><au>Granek, Rony</au><au>Bernheim-Groswasser, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-Particles Carried by Multiple Dynein Motors Self-Regulate Their Number of Actively Participating Motors</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><date>2021-08-18</date><risdate>2021</risdate><volume>22</volume><issue>16</issue><spage>8893</spage><pages>8893-</pages><artnum>8893</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Intra-cellular active transport by native cargos is ubiquitous. We investigate the motion of spherical nano-particles (NPs) grafted with flexible polymers that end with a nuclear localization signal peptide. This peptide allows the recruitment of several mammalian dynein motors from cytoplasmic extracts. To determine how motor-motor interactions influenced motility on the single microtubule level, we conducted bead-motility assays incorporating surface adsorbed microtubules and combined them with model simulations that were based on the properties of a single dynein. The experimental and simulation results revealed long time trajectories: when the number of NP-ligated motors N-m increased, run-times and run-lengths were enhanced and mean velocities were somewhat decreased. Moreover, the dependence of the velocity on run-time followed a universal curve, regardless of the system composition. Model simulations also demonstrated left- and right-handed helical motion and revealed self-regulation of the number of microtubule-bound, actively transporting dynein motors. This number was stochastic along trajectories and was distributed mainly between one, two, and three motors, regardless of N-m. We propose that this self-regulation allows our synthetic NPs to achieve persistent motion that is associated with major helicity. Such a helical motion might affect obstacle bypassing, which can influence active transport efficiency when facing the crowded environment of the cell.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34445598</pmid><doi>10.3390/ijms22168893</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-3999-6098</orcidid><orcidid>https://orcid.org/0000-0001-6839-5393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-08, Vol.22 (16), p.8893, Article 8893
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_webofscience_primary_000690520800001CitationCount
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Active transport
Binding sites
Biochemistry & Molecular Biology
Chemistry
Chemistry, Multidisciplinary
Dynein
Experiments
Handedness
Helicity
Life Sciences & Biomedicine
Ligands
Localization
Microtubules
Monte-Carlo simulations
Motility
motility assays
Motors
multi-motor complex
nano-particles
Nanoparticles
Peptides
Physical Sciences
Proteins
Science & Technology
Simulation
single particle tracking
Stochasticity
title Nano-Particles Carried by Multiple Dynein Motors Self-Regulate Their Number of Actively Participating Motors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-Particles%20Carried%20by%20Multiple%20Dynein%20Motors%20Self-Regulate%20Their%20Number%20of%20Actively%20Participating%20Motors&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Halbi,%20Gal&rft.date=2021-08-18&rft.volume=22&rft.issue=16&rft.spage=8893&rft.pages=8893-&rft.artnum=8893&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22168893&rft_dat=%3Cproquest_webof%3E2624241635%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624241635&rft_id=info:pmid/34445598&rft_doaj_id=oai_doaj_org_article_9a72e0f13b914406b3fcf6eedea6ab14&rfr_iscdi=true