DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network

Dating apps have gained tremendous popularity during the past decade. Compared with traditional offline dating means, dating apps ease the process of partner finding significantly. While bringing convenience to hundreds of millions of users, dating apps are vulnerable to become targets of adversarie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on dependable and secure computing 2021-09, Vol.18 (5), p.2193-2208
Hauptverfasser: He, Xinlei, Gong, Qingyuan, Chen, Yang, Zhang, Yang, Wang, Xin, Fu, Xiaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2208
container_issue 5
container_start_page 2193
container_title IEEE transactions on dependable and secure computing
container_volume 18
creator He, Xinlei
Gong, Qingyuan
Chen, Yang
Zhang, Yang
Wang, Xin
Fu, Xiaoming
description Dating apps have gained tremendous popularity during the past decade. Compared with traditional offline dating means, dating apps ease the process of partner finding significantly. While bringing convenience to hundreds of millions of users, dating apps are vulnerable to become targets of adversaries. In this article, we focus on malicious user detection in dating apps. Existing methods overlooked the signals hidden in the textual information of user interactions, particularly the interplay of temporal-spatial behaviors and textual information, leading to limited detection performance. To tackle this, we propose DatingSec, a novel malicious user detection system for dating apps. Concretely, DatingSec leverages long short-term memory neural networks (LSTM) and an attentive module to capture the interplay of users' temporal-spatial behaviors and user-generated textual content. We evaluate DatingSec on a real-world dataset collected from Momo, a widely used dating app with more than 180 million users. Experimental results show that DatingSec outperforms state-of-the-art methods and achieves an F1-score of 0.857 and AUC of 0.940.
doi_str_mv 10.1109/TDSC.2021.3068307
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000690440600012CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9384217</ieee_id><sourcerecordid>2565236442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ea01f4b90de0ce548c02212992df393469068906a8c398eb381117d3b0ab6cf93</originalsourceid><addsrcrecordid>eNqNkMtLxDAQxoso-PwDxEvAo3SdSdJu4m3t-gIfB_VqSbNTiY9mbbKI_70pFb16GPIN_L6ZzJdl-wgTRNDHD_P7asKB40RAqQRM17It1BJzAFTrSReyyAs9xc1sO4QXAC6VllvZ09xE1z3fkz1hc4pkh47dmDdnnV8FNrPWr7oYmOvYiLLZchnYYxikYZXvInUxPzWBFmwWh8b5jt1S_PT962620Zq3QHs_7072eH72UF3m13cXV9XsOrdci5iTAWxlo2FBYKmQygLnyLXmi1ZoIUudjkpllBVaUSMUIk4XogHTlLbVYic7HOcue_-xohDrF7_qu7Sy5kVZcFFKyROFI2V7H0JPbb3s3bvpv2qEeoixHmKshxjrnxiTR42eT2p8G6yjztKvDwDS36SEMinklYtmOL8aMkvWo_9bE30w0o7oj9JCSY5T8Q3SpY3J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565236442</pqid></control><display><type>article</type><title>DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network</title><source>IEEE Electronic Library (IEL)</source><creator>He, Xinlei ; Gong, Qingyuan ; Chen, Yang ; Zhang, Yang ; Wang, Xin ; Fu, Xiaoming</creator><creatorcontrib>He, Xinlei ; Gong, Qingyuan ; Chen, Yang ; Zhang, Yang ; Wang, Xin ; Fu, Xiaoming</creatorcontrib><description>Dating apps have gained tremendous popularity during the past decade. Compared with traditional offline dating means, dating apps ease the process of partner finding significantly. While bringing convenience to hundreds of millions of users, dating apps are vulnerable to become targets of adversaries. In this article, we focus on malicious user detection in dating apps. Existing methods overlooked the signals hidden in the textual information of user interactions, particularly the interplay of temporal-spatial behaviors and textual information, leading to limited detection performance. To tackle this, we propose DatingSec, a novel malicious user detection system for dating apps. Concretely, DatingSec leverages long short-term memory neural networks (LSTM) and an attentive module to capture the interplay of users' temporal-spatial behaviors and user-generated textual content. We evaluate DatingSec on a real-world dataset collected from Momo, a widely used dating app with more than 180 million users. Experimental results show that DatingSec outperforms state-of-the-art methods and achieves an F1-score of 0.857 and AUC of 0.940.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2021.3068307</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>LOS ALAMITOS: IEEE</publisher><subject>attention mechanism ; Blogs ; Computer Science ; Computer Science, Hardware &amp; Architecture ; Computer Science, Information Systems ; Computer Science, Software Engineering ; Dating apps ; Dating services ; Dating techniques ; deep learning ; Feature extraction ; malicious account detection ; Neural networks ; Privacy ; Safety ; Science &amp; Technology ; Social networking (online) ; Technology ; text analytics ; User-generated content</subject><ispartof>IEEE transactions on dependable and secure computing, 2021-09, Vol.18 (5), p.2193-2208</ispartof><rights>Copyright IEEE Computer Society 2021</rights><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000690440600012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c293t-ea01f4b90de0ce548c02212992df393469068906a8c398eb381117d3b0ab6cf93</citedby><cites>FETCH-LOGICAL-c293t-ea01f4b90de0ce548c02212992df393469068906a8c398eb381117d3b0ab6cf93</cites><orcidid>0000-0001-5725-2848 ; 0000-0003-4749-3060 ; 0000-0002-8012-4753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9384217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9384217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Xinlei</creatorcontrib><creatorcontrib>Gong, Qingyuan</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Fu, Xiaoming</creatorcontrib><title>DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><addtitle>IEEE T DEPEND SECURE</addtitle><description>Dating apps have gained tremendous popularity during the past decade. Compared with traditional offline dating means, dating apps ease the process of partner finding significantly. While bringing convenience to hundreds of millions of users, dating apps are vulnerable to become targets of adversaries. In this article, we focus on malicious user detection in dating apps. Existing methods overlooked the signals hidden in the textual information of user interactions, particularly the interplay of temporal-spatial behaviors and textual information, leading to limited detection performance. To tackle this, we propose DatingSec, a novel malicious user detection system for dating apps. Concretely, DatingSec leverages long short-term memory neural networks (LSTM) and an attentive module to capture the interplay of users' temporal-spatial behaviors and user-generated textual content. We evaluate DatingSec on a real-world dataset collected from Momo, a widely used dating app with more than 180 million users. Experimental results show that DatingSec outperforms state-of-the-art methods and achieves an F1-score of 0.857 and AUC of 0.940.</description><subject>attention mechanism</subject><subject>Blogs</subject><subject>Computer Science</subject><subject>Computer Science, Hardware &amp; Architecture</subject><subject>Computer Science, Information Systems</subject><subject>Computer Science, Software Engineering</subject><subject>Dating apps</subject><subject>Dating services</subject><subject>Dating techniques</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>malicious account detection</subject><subject>Neural networks</subject><subject>Privacy</subject><subject>Safety</subject><subject>Science &amp; Technology</subject><subject>Social networking (online)</subject><subject>Technology</subject><subject>text analytics</subject><subject>User-generated content</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkMtLxDAQxoso-PwDxEvAo3SdSdJu4m3t-gIfB_VqSbNTiY9mbbKI_70pFb16GPIN_L6ZzJdl-wgTRNDHD_P7asKB40RAqQRM17It1BJzAFTrSReyyAs9xc1sO4QXAC6VllvZ09xE1z3fkz1hc4pkh47dmDdnnV8FNrPWr7oYmOvYiLLZchnYYxikYZXvInUxPzWBFmwWh8b5jt1S_PT962620Zq3QHs_7072eH72UF3m13cXV9XsOrdci5iTAWxlo2FBYKmQygLnyLXmi1ZoIUudjkpllBVaUSMUIk4XogHTlLbVYic7HOcue_-xohDrF7_qu7Sy5kVZcFFKyROFI2V7H0JPbb3s3bvpv2qEeoixHmKshxjrnxiTR42eT2p8G6yjztKvDwDS36SEMinklYtmOL8aMkvWo_9bE30w0o7oj9JCSY5T8Q3SpY3J</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>He, Xinlei</creator><creator>Gong, Qingyuan</creator><creator>Chen, Yang</creator><creator>Zhang, Yang</creator><creator>Wang, Xin</creator><creator>Fu, Xiaoming</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-5725-2848</orcidid><orcidid>https://orcid.org/0000-0003-4749-3060</orcidid><orcidid>https://orcid.org/0000-0002-8012-4753</orcidid></search><sort><creationdate>20210901</creationdate><title>DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network</title><author>He, Xinlei ; Gong, Qingyuan ; Chen, Yang ; Zhang, Yang ; Wang, Xin ; Fu, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ea01f4b90de0ce548c02212992df393469068906a8c398eb381117d3b0ab6cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>attention mechanism</topic><topic>Blogs</topic><topic>Computer Science</topic><topic>Computer Science, Hardware &amp; Architecture</topic><topic>Computer Science, Information Systems</topic><topic>Computer Science, Software Engineering</topic><topic>Dating apps</topic><topic>Dating services</topic><topic>Dating techniques</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>malicious account detection</topic><topic>Neural networks</topic><topic>Privacy</topic><topic>Safety</topic><topic>Science &amp; Technology</topic><topic>Social networking (online)</topic><topic>Technology</topic><topic>text analytics</topic><topic>User-generated content</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Xinlei</creatorcontrib><creatorcontrib>Gong, Qingyuan</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Fu, Xiaoming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Xinlei</au><au>Gong, Qingyuan</au><au>Chen, Yang</au><au>Zhang, Yang</au><au>Wang, Xin</au><au>Fu, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><stitle>IEEE T DEPEND SECURE</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>18</volume><issue>5</issue><spage>2193</spage><epage>2208</epage><pages>2193-2208</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Dating apps have gained tremendous popularity during the past decade. Compared with traditional offline dating means, dating apps ease the process of partner finding significantly. While bringing convenience to hundreds of millions of users, dating apps are vulnerable to become targets of adversaries. In this article, we focus on malicious user detection in dating apps. Existing methods overlooked the signals hidden in the textual information of user interactions, particularly the interplay of temporal-spatial behaviors and textual information, leading to limited detection performance. To tackle this, we propose DatingSec, a novel malicious user detection system for dating apps. Concretely, DatingSec leverages long short-term memory neural networks (LSTM) and an attentive module to capture the interplay of users' temporal-spatial behaviors and user-generated textual content. We evaluate DatingSec on a real-world dataset collected from Momo, a widely used dating app with more than 180 million users. Experimental results show that DatingSec outperforms state-of-the-art methods and achieves an F1-score of 0.857 and AUC of 0.940.</abstract><cop>LOS ALAMITOS</cop><pub>IEEE</pub><doi>10.1109/TDSC.2021.3068307</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5725-2848</orcidid><orcidid>https://orcid.org/0000-0003-4749-3060</orcidid><orcidid>https://orcid.org/0000-0002-8012-4753</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5971
ispartof IEEE transactions on dependable and secure computing, 2021-09, Vol.18 (5), p.2193-2208
issn 1545-5971
1941-0018
language eng
recordid cdi_webofscience_primary_000690440600012CitationCount
source IEEE Electronic Library (IEL)
subjects attention mechanism
Blogs
Computer Science
Computer Science, Hardware & Architecture
Computer Science, Information Systems
Computer Science, Software Engineering
Dating apps
Dating services
Dating techniques
deep learning
Feature extraction
malicious account detection
Neural networks
Privacy
Safety
Science & Technology
Social networking (online)
Technology
text analytics
User-generated content
title DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DatingSec:%20Detecting%20Malicious%20Accounts%20in%20Dating%20Apps%20Using%20a%20Content-Based%20Attention%20Network&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=He,%20Xinlei&rft.date=2021-09-01&rft.volume=18&rft.issue=5&rft.spage=2193&rft.epage=2208&rft.pages=2193-2208&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2021.3068307&rft_dat=%3Cproquest_RIE%3E2565236442%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565236442&rft_id=info:pmid/&rft_ieee_id=9384217&rfr_iscdi=true