DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network
Dating apps have gained tremendous popularity during the past decade. Compared with traditional offline dating means, dating apps ease the process of partner finding significantly. While bringing convenience to hundreds of millions of users, dating apps are vulnerable to become targets of adversarie...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on dependable and secure computing 2021-09, Vol.18 (5), p.2193-2208 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2208 |
---|---|
container_issue | 5 |
container_start_page | 2193 |
container_title | IEEE transactions on dependable and secure computing |
container_volume | 18 |
creator | He, Xinlei Gong, Qingyuan Chen, Yang Zhang, Yang Wang, Xin Fu, Xiaoming |
description | Dating apps have gained tremendous popularity during the past decade. Compared with traditional offline dating means, dating apps ease the process of partner finding significantly. While bringing convenience to hundreds of millions of users, dating apps are vulnerable to become targets of adversaries. In this article, we focus on malicious user detection in dating apps. Existing methods overlooked the signals hidden in the textual information of user interactions, particularly the interplay of temporal-spatial behaviors and textual information, leading to limited detection performance. To tackle this, we propose DatingSec, a novel malicious user detection system for dating apps. Concretely, DatingSec leverages long short-term memory neural networks (LSTM) and an attentive module to capture the interplay of users' temporal-spatial behaviors and user-generated textual content. We evaluate DatingSec on a real-world dataset collected from Momo, a widely used dating app with more than 180 million users. Experimental results show that DatingSec outperforms state-of-the-art methods and achieves an F1-score of 0.857 and AUC of 0.940. |
doi_str_mv | 10.1109/TDSC.2021.3068307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000690440600012CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9384217</ieee_id><sourcerecordid>2565236442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ea01f4b90de0ce548c02212992df393469068906a8c398eb381117d3b0ab6cf93</originalsourceid><addsrcrecordid>eNqNkMtLxDAQxoso-PwDxEvAo3SdSdJu4m3t-gIfB_VqSbNTiY9mbbKI_70pFb16GPIN_L6ZzJdl-wgTRNDHD_P7asKB40RAqQRM17It1BJzAFTrSReyyAs9xc1sO4QXAC6VllvZ09xE1z3fkz1hc4pkh47dmDdnnV8FNrPWr7oYmOvYiLLZchnYYxikYZXvInUxPzWBFmwWh8b5jt1S_PT962620Zq3QHs_7072eH72UF3m13cXV9XsOrdci5iTAWxlo2FBYKmQygLnyLXmi1ZoIUudjkpllBVaUSMUIk4XogHTlLbVYic7HOcue_-xohDrF7_qu7Sy5kVZcFFKyROFI2V7H0JPbb3s3bvpv2qEeoixHmKshxjrnxiTR42eT2p8G6yjztKvDwDS36SEMinklYtmOL8aMkvWo_9bE30w0o7oj9JCSY5T8Q3SpY3J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565236442</pqid></control><display><type>article</type><title>DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network</title><source>IEEE Electronic Library (IEL)</source><creator>He, Xinlei ; Gong, Qingyuan ; Chen, Yang ; Zhang, Yang ; Wang, Xin ; Fu, Xiaoming</creator><creatorcontrib>He, Xinlei ; Gong, Qingyuan ; Chen, Yang ; Zhang, Yang ; Wang, Xin ; Fu, Xiaoming</creatorcontrib><description>Dating apps have gained tremendous popularity during the past decade. Compared with traditional offline dating means, dating apps ease the process of partner finding significantly. While bringing convenience to hundreds of millions of users, dating apps are vulnerable to become targets of adversaries. In this article, we focus on malicious user detection in dating apps. Existing methods overlooked the signals hidden in the textual information of user interactions, particularly the interplay of temporal-spatial behaviors and textual information, leading to limited detection performance. To tackle this, we propose DatingSec, a novel malicious user detection system for dating apps. Concretely, DatingSec leverages long short-term memory neural networks (LSTM) and an attentive module to capture the interplay of users' temporal-spatial behaviors and user-generated textual content. We evaluate DatingSec on a real-world dataset collected from Momo, a widely used dating app with more than 180 million users. Experimental results show that DatingSec outperforms state-of-the-art methods and achieves an F1-score of 0.857 and AUC of 0.940.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2021.3068307</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>LOS ALAMITOS: IEEE</publisher><subject>attention mechanism ; Blogs ; Computer Science ; Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Computer Science, Software Engineering ; Dating apps ; Dating services ; Dating techniques ; deep learning ; Feature extraction ; malicious account detection ; Neural networks ; Privacy ; Safety ; Science & Technology ; Social networking (online) ; Technology ; text analytics ; User-generated content</subject><ispartof>IEEE transactions on dependable and secure computing, 2021-09, Vol.18 (5), p.2193-2208</ispartof><rights>Copyright IEEE Computer Society 2021</rights><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000690440600012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c293t-ea01f4b90de0ce548c02212992df393469068906a8c398eb381117d3b0ab6cf93</citedby><cites>FETCH-LOGICAL-c293t-ea01f4b90de0ce548c02212992df393469068906a8c398eb381117d3b0ab6cf93</cites><orcidid>0000-0001-5725-2848 ; 0000-0003-4749-3060 ; 0000-0002-8012-4753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9384217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9384217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Xinlei</creatorcontrib><creatorcontrib>Gong, Qingyuan</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Fu, Xiaoming</creatorcontrib><title>DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><addtitle>IEEE T DEPEND SECURE</addtitle><description>Dating apps have gained tremendous popularity during the past decade. Compared with traditional offline dating means, dating apps ease the process of partner finding significantly. While bringing convenience to hundreds of millions of users, dating apps are vulnerable to become targets of adversaries. In this article, we focus on malicious user detection in dating apps. Existing methods overlooked the signals hidden in the textual information of user interactions, particularly the interplay of temporal-spatial behaviors and textual information, leading to limited detection performance. To tackle this, we propose DatingSec, a novel malicious user detection system for dating apps. Concretely, DatingSec leverages long short-term memory neural networks (LSTM) and an attentive module to capture the interplay of users' temporal-spatial behaviors and user-generated textual content. We evaluate DatingSec on a real-world dataset collected from Momo, a widely used dating app with more than 180 million users. Experimental results show that DatingSec outperforms state-of-the-art methods and achieves an F1-score of 0.857 and AUC of 0.940.</description><subject>attention mechanism</subject><subject>Blogs</subject><subject>Computer Science</subject><subject>Computer Science, Hardware & Architecture</subject><subject>Computer Science, Information Systems</subject><subject>Computer Science, Software Engineering</subject><subject>Dating apps</subject><subject>Dating services</subject><subject>Dating techniques</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>malicious account detection</subject><subject>Neural networks</subject><subject>Privacy</subject><subject>Safety</subject><subject>Science & Technology</subject><subject>Social networking (online)</subject><subject>Technology</subject><subject>text analytics</subject><subject>User-generated content</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkMtLxDAQxoso-PwDxEvAo3SdSdJu4m3t-gIfB_VqSbNTiY9mbbKI_70pFb16GPIN_L6ZzJdl-wgTRNDHD_P7asKB40RAqQRM17It1BJzAFTrSReyyAs9xc1sO4QXAC6VllvZ09xE1z3fkz1hc4pkh47dmDdnnV8FNrPWr7oYmOvYiLLZchnYYxikYZXvInUxPzWBFmwWh8b5jt1S_PT962620Zq3QHs_7072eH72UF3m13cXV9XsOrdci5iTAWxlo2FBYKmQygLnyLXmi1ZoIUudjkpllBVaUSMUIk4XogHTlLbVYic7HOcue_-xohDrF7_qu7Sy5kVZcFFKyROFI2V7H0JPbb3s3bvpv2qEeoixHmKshxjrnxiTR42eT2p8G6yjztKvDwDS36SEMinklYtmOL8aMkvWo_9bE30w0o7oj9JCSY5T8Q3SpY3J</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>He, Xinlei</creator><creator>Gong, Qingyuan</creator><creator>Chen, Yang</creator><creator>Zhang, Yang</creator><creator>Wang, Xin</creator><creator>Fu, Xiaoming</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-5725-2848</orcidid><orcidid>https://orcid.org/0000-0003-4749-3060</orcidid><orcidid>https://orcid.org/0000-0002-8012-4753</orcidid></search><sort><creationdate>20210901</creationdate><title>DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network</title><author>He, Xinlei ; Gong, Qingyuan ; Chen, Yang ; Zhang, Yang ; Wang, Xin ; Fu, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ea01f4b90de0ce548c02212992df393469068906a8c398eb381117d3b0ab6cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>attention mechanism</topic><topic>Blogs</topic><topic>Computer Science</topic><topic>Computer Science, Hardware & Architecture</topic><topic>Computer Science, Information Systems</topic><topic>Computer Science, Software Engineering</topic><topic>Dating apps</topic><topic>Dating services</topic><topic>Dating techniques</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>malicious account detection</topic><topic>Neural networks</topic><topic>Privacy</topic><topic>Safety</topic><topic>Science & Technology</topic><topic>Social networking (online)</topic><topic>Technology</topic><topic>text analytics</topic><topic>User-generated content</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Xinlei</creatorcontrib><creatorcontrib>Gong, Qingyuan</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Fu, Xiaoming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Xinlei</au><au>Gong, Qingyuan</au><au>Chen, Yang</au><au>Zhang, Yang</au><au>Wang, Xin</au><au>Fu, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><stitle>IEEE T DEPEND SECURE</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>18</volume><issue>5</issue><spage>2193</spage><epage>2208</epage><pages>2193-2208</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Dating apps have gained tremendous popularity during the past decade. Compared with traditional offline dating means, dating apps ease the process of partner finding significantly. While bringing convenience to hundreds of millions of users, dating apps are vulnerable to become targets of adversaries. In this article, we focus on malicious user detection in dating apps. Existing methods overlooked the signals hidden in the textual information of user interactions, particularly the interplay of temporal-spatial behaviors and textual information, leading to limited detection performance. To tackle this, we propose DatingSec, a novel malicious user detection system for dating apps. Concretely, DatingSec leverages long short-term memory neural networks (LSTM) and an attentive module to capture the interplay of users' temporal-spatial behaviors and user-generated textual content. We evaluate DatingSec on a real-world dataset collected from Momo, a widely used dating app with more than 180 million users. Experimental results show that DatingSec outperforms state-of-the-art methods and achieves an F1-score of 0.857 and AUC of 0.940.</abstract><cop>LOS ALAMITOS</cop><pub>IEEE</pub><doi>10.1109/TDSC.2021.3068307</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5725-2848</orcidid><orcidid>https://orcid.org/0000-0003-4749-3060</orcidid><orcidid>https://orcid.org/0000-0002-8012-4753</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5971 |
ispartof | IEEE transactions on dependable and secure computing, 2021-09, Vol.18 (5), p.2193-2208 |
issn | 1545-5971 1941-0018 |
language | eng |
recordid | cdi_webofscience_primary_000690440600012CitationCount |
source | IEEE Electronic Library (IEL) |
subjects | attention mechanism Blogs Computer Science Computer Science, Hardware & Architecture Computer Science, Information Systems Computer Science, Software Engineering Dating apps Dating services Dating techniques deep learning Feature extraction malicious account detection Neural networks Privacy Safety Science & Technology Social networking (online) Technology text analytics User-generated content |
title | DatingSec: Detecting Malicious Accounts in Dating Apps Using a Content-Based Attention Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DatingSec:%20Detecting%20Malicious%20Accounts%20in%20Dating%20Apps%20Using%20a%20Content-Based%20Attention%20Network&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=He,%20Xinlei&rft.date=2021-09-01&rft.volume=18&rft.issue=5&rft.spage=2193&rft.epage=2208&rft.pages=2193-2208&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2021.3068307&rft_dat=%3Cproquest_RIE%3E2565236442%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565236442&rft_id=info:pmid/&rft_ieee_id=9384217&rfr_iscdi=true |