Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants
In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-08, Vol.22 (16), p.8398, Article 8398 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 8398 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Hezema, Yasmine S. Shukla, Mukund R. Goel, Alok Ayyanath, Murali M. Sherif, Sherif M. Saxena, Praveen K. |
description | In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology. |
doi_str_mv | 10.3390/ijms22168398 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000689288100001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_095fab1ae09a49bebb0f766c705b7ed9</doaj_id><sourcerecordid>2566042055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-ac49fef14cb5450ad6f5e31cbb68e169e5aabd5e656b0a4fe1ce8fd26898db233</originalsourceid><addsrcrecordid>eNqNksGPUyEQxl-Mxl1Xb54NiRcTrQIP6ONionXVJhu76dZ4JMAbKvW9RwVa3ZP_utSuTdeT4cBk5scXZuarqscEv6xriV_5VZ8oJaKpZXOnOiWM0hHGYnz3KD6pHqS0wpjWlMv71UnNGOME89Pq1zyEnHKw3xKabSHCz3WElPywRFf50-WcID20JXw3P39L0LRfx7AFNEt9yN6W_A5Gi9BB1IMFFBz64rt2tLheA7qyPgzID2hRimkZtcvQFthoawO67PSQ08PqntNdgkc391n1-f35YvJxdDH7MJ28uRhZNm7ySFsmHTjCrOGMY90Kx6Em1hjRABESuNam5SC4MFgzB8RC41oqGtm0htb1WTXd67ZBr9Q6-l7HaxW0V38SIS6VjqWlDhSW3GlDNGCpmTRgDHZjIewYczOGVhat13ut9cb00FoYctTdLdHblcF_VcuwVWVFu6kXgWc3AjF830DKqvfJQlcmAmGTFOVCYEYx36FP_0FXYROHMipFBWXlCE4K9WJP2RhSiuAOnyFY7Vyijl1S8CfHDRzgv7YoQLMHfoAJLlkPZbkHDBdLNZI2DSkRJhOfdS6bnoTNkMvT5___tP4Nmbrbpw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624242651</pqid></control><display><type>article</type><title>Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Hezema, Yasmine S. ; Shukla, Mukund R. ; Goel, Alok ; Ayyanath, Murali M. ; Sherif, Sherif M. ; Saxena, Praveen K.</creator><creatorcontrib>Hezema, Yasmine S. ; Shukla, Mukund R. ; Goel, Alok ; Ayyanath, Murali M. ; Sherif, Sherif M. ; Saxena, Praveen K.</creatorcontrib><description>In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22168398</identifier><identifier>PMID: 34445105</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>ABA ; Abiotic stress ; Abscisic acid ; Biochemistry & Molecular Biology ; Chemistry ; Chemistry, Multidisciplinary ; Evaluation ; Gene expression ; Genes ; Grafting ; Immunological tolerance ; Life Sciences & Biomedicine ; Mannitol ; mRNA transport ; Nicotiana - genetics ; Nicotiana tabacum ; Osmosis - physiology ; Osmotic Pressure - physiology ; Osmotic stress ; Physical Sciences ; Physiology ; Plant Roots - genetics ; Plants, Genetically Modified - genetics ; Polyethylene glycol ; RNA transport ; Rootstocks ; Salinity ; Science & Technology ; Scions ; Sodium chloride ; Solanum lycopersicum ; Solanum lycopersicum - genetics ; Solanum tuberosum ; Solanum tuberosum - genetics ; StDREB1 ; StNPR1 ; Tobacco ; Tomatoes ; Transcription ; Transgenes ; Transgenes - genetics ; Transgenic plants ; transgrafting</subject><ispartof>International journal of molecular sciences, 2021-08, Vol.22 (16), p.8398, Article 8398</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000689288100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-ac49fef14cb5450ad6f5e31cbb68e169e5aabd5e656b0a4fe1ce8fd26898db233</citedby><cites>FETCH-LOGICAL-c478t-ac49fef14cb5450ad6f5e31cbb68e169e5aabd5e656b0a4fe1ce8fd26898db233</cites><orcidid>0000-0002-9002-1782 ; 0000-0002-7203-6868 ; 0000-0001-5791-4135 ; 0000-0002-3580-3538 ; 0000-0002-2801-0679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395105/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395105/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34445105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hezema, Yasmine S.</creatorcontrib><creatorcontrib>Shukla, Mukund R.</creatorcontrib><creatorcontrib>Goel, Alok</creatorcontrib><creatorcontrib>Ayyanath, Murali M.</creatorcontrib><creatorcontrib>Sherif, Sherif M.</creatorcontrib><creatorcontrib>Saxena, Praveen K.</creatorcontrib><title>Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.</description><subject>ABA</subject><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>Biochemistry & Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Evaluation</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Grafting</subject><subject>Immunological tolerance</subject><subject>Life Sciences & Biomedicine</subject><subject>Mannitol</subject><subject>mRNA transport</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana tabacum</subject><subject>Osmosis - physiology</subject><subject>Osmotic Pressure - physiology</subject><subject>Osmotic stress</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Plant Roots - genetics</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Polyethylene glycol</subject><subject>RNA transport</subject><subject>Rootstocks</subject><subject>Salinity</subject><subject>Science & Technology</subject><subject>Scions</subject><subject>Sodium chloride</subject><subject>Solanum lycopersicum</subject><subject>Solanum lycopersicum - genetics</subject><subject>Solanum tuberosum</subject><subject>Solanum tuberosum - genetics</subject><subject>StDREB1</subject><subject>StNPR1</subject><subject>Tobacco</subject><subject>Tomatoes</subject><subject>Transcription</subject><subject>Transgenes</subject><subject>Transgenes - genetics</subject><subject>Transgenic plants</subject><subject>transgrafting</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNksGPUyEQxl-Mxl1Xb54NiRcTrQIP6ONionXVJhu76dZ4JMAbKvW9RwVa3ZP_utSuTdeT4cBk5scXZuarqscEv6xriV_5VZ8oJaKpZXOnOiWM0hHGYnz3KD6pHqS0wpjWlMv71UnNGOME89Pq1zyEnHKw3xKabSHCz3WElPywRFf50-WcID20JXw3P39L0LRfx7AFNEt9yN6W_A5Gi9BB1IMFFBz64rt2tLheA7qyPgzID2hRimkZtcvQFthoawO67PSQ08PqntNdgkc391n1-f35YvJxdDH7MJ28uRhZNm7ySFsmHTjCrOGMY90Kx6Em1hjRABESuNam5SC4MFgzB8RC41oqGtm0htb1WTXd67ZBr9Q6-l7HaxW0V38SIS6VjqWlDhSW3GlDNGCpmTRgDHZjIewYczOGVhat13ut9cb00FoYctTdLdHblcF_VcuwVWVFu6kXgWc3AjF830DKqvfJQlcmAmGTFOVCYEYx36FP_0FXYROHMipFBWXlCE4K9WJP2RhSiuAOnyFY7Vyijl1S8CfHDRzgv7YoQLMHfoAJLlkPZbkHDBdLNZI2DSkRJhOfdS6bnoTNkMvT5___tP4Nmbrbpw</recordid><startdate>20210805</startdate><enddate>20210805</enddate><creator>Hezema, Yasmine S.</creator><creator>Shukla, Mukund R.</creator><creator>Goel, Alok</creator><creator>Ayyanath, Murali M.</creator><creator>Sherif, Sherif M.</creator><creator>Saxena, Praveen K.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9002-1782</orcidid><orcidid>https://orcid.org/0000-0002-7203-6868</orcidid><orcidid>https://orcid.org/0000-0001-5791-4135</orcidid><orcidid>https://orcid.org/0000-0002-3580-3538</orcidid><orcidid>https://orcid.org/0000-0002-2801-0679</orcidid></search><sort><creationdate>20210805</creationdate><title>Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants</title><author>Hezema, Yasmine S. ; Shukla, Mukund R. ; Goel, Alok ; Ayyanath, Murali M. ; Sherif, Sherif M. ; Saxena, Praveen K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-ac49fef14cb5450ad6f5e31cbb68e169e5aabd5e656b0a4fe1ce8fd26898db233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ABA</topic><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>Biochemistry & Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Evaluation</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Grafting</topic><topic>Immunological tolerance</topic><topic>Life Sciences & Biomedicine</topic><topic>Mannitol</topic><topic>mRNA transport</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana tabacum</topic><topic>Osmosis - physiology</topic><topic>Osmotic Pressure - physiology</topic><topic>Osmotic stress</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Plant Roots - genetics</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Polyethylene glycol</topic><topic>RNA transport</topic><topic>Rootstocks</topic><topic>Salinity</topic><topic>Science & Technology</topic><topic>Scions</topic><topic>Sodium chloride</topic><topic>Solanum lycopersicum</topic><topic>Solanum lycopersicum - genetics</topic><topic>Solanum tuberosum</topic><topic>Solanum tuberosum - genetics</topic><topic>StDREB1</topic><topic>StNPR1</topic><topic>Tobacco</topic><topic>Tomatoes</topic><topic>Transcription</topic><topic>Transgenes</topic><topic>Transgenes - genetics</topic><topic>Transgenic plants</topic><topic>transgrafting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hezema, Yasmine S.</creatorcontrib><creatorcontrib>Shukla, Mukund R.</creatorcontrib><creatorcontrib>Goel, Alok</creatorcontrib><creatorcontrib>Ayyanath, Murali M.</creatorcontrib><creatorcontrib>Sherif, Sherif M.</creatorcontrib><creatorcontrib>Saxena, Praveen K.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hezema, Yasmine S.</au><au>Shukla, Mukund R.</au><au>Goel, Alok</au><au>Ayyanath, Murali M.</au><au>Sherif, Sherif M.</au><au>Saxena, Praveen K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2021-08-05</date><risdate>2021</risdate><volume>22</volume><issue>16</issue><spage>8398</spage><pages>8398-</pages><artnum>8398</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34445105</pmid><doi>10.3390/ijms22168398</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-9002-1782</orcidid><orcidid>https://orcid.org/0000-0002-7203-6868</orcidid><orcidid>https://orcid.org/0000-0001-5791-4135</orcidid><orcidid>https://orcid.org/0000-0002-3580-3538</orcidid><orcidid>https://orcid.org/0000-0002-2801-0679</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-08, Vol.22 (16), p.8398, Article 8398 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_webofscience_primary_000689288100001CitationCount |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | ABA Abiotic stress Abscisic acid Biochemistry & Molecular Biology Chemistry Chemistry, Multidisciplinary Evaluation Gene expression Genes Grafting Immunological tolerance Life Sciences & Biomedicine Mannitol mRNA transport Nicotiana - genetics Nicotiana tabacum Osmosis - physiology Osmotic Pressure - physiology Osmotic stress Physical Sciences Physiology Plant Roots - genetics Plants, Genetically Modified - genetics Polyethylene glycol RNA transport Rootstocks Salinity Science & Technology Scions Sodium chloride Solanum lycopersicum Solanum lycopersicum - genetics Solanum tuberosum Solanum tuberosum - genetics StDREB1 StNPR1 Tobacco Tomatoes Transcription Transgenes Transgenes - genetics Transgenic plants transgrafting |
title | Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rootstocks%20Overexpressing%20StNPR1%20and%20StDREB1%20Improve%20Osmotic%20Stress%20Tolerance%20of%20Wild-Type%20Scion%20in%20Transgrafted%20Tobacco%20Plants&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Hezema,%20Yasmine%20S.&rft.date=2021-08-05&rft.volume=22&rft.issue=16&rft.spage=8398&rft.pages=8398-&rft.artnum=8398&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22168398&rft_dat=%3Cproquest_webof%3E2566042055%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624242651&rft_id=info:pmid/34445105&rft_doaj_id=oai_doaj_org_article_095fab1ae09a49bebb0f766c705b7ed9&rfr_iscdi=true |