MgNb2O6 Modified K0.5Na0.5NbO3 Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance
In this work, piezoceramics of the lead‐free composition K0.5Na0.5NbO3 with an increasing amount of MgNb2O6 (0, 0.5, 1, 2 wt.%) were prepared through conventional solid‐state synthesis and sintered in air atmosphere at 1100 °C. The effect of magnesium niobate addition on structure, microstructure an...
Gespeichert in:
Veröffentlicht in: | ChemistryOpen (Weinheim) 2021-08, Vol.10 (8), p.798-805 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 805 |
---|---|
container_issue | 8 |
container_start_page | 798 |
container_title | ChemistryOpen (Weinheim) |
container_volume | 10 |
creator | Iacomini, Antonio Garroni, Sebastiano Senes, Nina Mulas, Gabriele Enzo, Stefano Poddighe, Matteo García, Álvaro Bartolomé, José F. Pardo, Lorena |
description | In this work, piezoceramics of the lead‐free composition K0.5Na0.5NbO3 with an increasing amount of MgNb2O6 (0, 0.5, 1, 2 wt.%) were prepared through conventional solid‐state synthesis and sintered in air atmosphere at 1100 °C. The effect of magnesium niobate addition on structure, microstructure and piezoelectric properties was evaluated. The ceramics maintain the orthorhombic Amm2 phase for all compositions, while an orthorhombic Pbcm secondary phase was found for increasing the concentration of MgNb2O6. Our results show that densification of these ceramics can be significantly improved up to 94.9 % of theoretical density by adding a small amount of magnesium‐based oxide (1 wt.%). Scanning electron microscopy morphology of the 1 wt.% system reveals a well‐packed structure with homogeneous grain size of ∼2.72 μm. Dielectric and piezoelectric properties become optimal for 0.5–1.0 wt.% of MgNb2O6 that shows, with respect to the unmodified composition, either higher piezoelectric coefficients, lower anisotropy and relatively low piezoelectric losses (d33=97 pC N−1; d31=−36.99 pC N−1 and g31=−14.04×10−3 mV N−1; Qp(d31)=76 and Qp(g31)=69) or enhanced electromechanical coupling factors (kp=29.06 % and k31=17.25 %).
Piezoceramics K0.5Na0.5NbO3 (KNN) have been fabricated with increasing amounts of MgNb2O6 (MN). The synthesis approach involves a combination of mechanochemical‐assisted activation method and air sintering. The addition of MN reduces the size of grain, improve the density and increase the crystalline disorder of KNN. Furthermore, an increase in the piezoelectric response is found between 0.5–1 wt.% of MN. |
doi_str_mv | 10.1002/open.202100089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000688713800015CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_09b385f1ec2a49a395f78c3d037a9bfa</doaj_id><sourcerecordid>2564515647</sourcerecordid><originalsourceid>FETCH-LOGICAL-d3949-c521c50d3d67b2ff34581019cf6b3e29de2c71e63ea1104b8aade56848c4ff6e3</originalsourceid><addsrcrecordid>eNqNUstuEzEUHSEQrUq3rC2xhAS_x2aBhEIoEW0SUVhbHvs6OJqM03lAywr-gG_kS3BIFNEdG_ue63PP9X0UxVOCxwRj-jJtoRlTTDPASj8oTinRZESYZA__sU-K865bZwouuSZCPi5OGOeYSoxPi59Xq3lFFxJdJR9DBI8-4LGY291RLRiauvT7x69lhO_JQWs30XWv0LWzta1qQMs2e7suNqsX6LpvB9cPra3R29j1qe1japBtPJqkzbaGWzTbbMHbxgGyPfoIXWp24EnxKNi6g_PDfVZ8fjf9NHk_ulxczCZvLkeeaa5HTlDiBPbMy7KiITAuFMFEuyArBlR7oK4kIBlYQjCvlLUehFRcOR6CBHZWzPa6Ptm12bZxY9s7k2w0fx2pXRmb_-xqMFhXTIlAwFHLtWVahFI55jErra6CzVqv91rbodqAd9D0ue57ovdfmvjFrNJXo5jUisss8Owg0KabAbrerNPQNrl-Q4XkIo-Jl5ml9qxvUKXQuQi5X8cseaBSqZIwlS0iJrG3u5ZP0tD0OfT5_4dmtj6wYw13RxrBZrdnZrdn5rhnZrGczo-I_QElZMZy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564515647</pqid></control><display><type>article</type><title>MgNb2O6 Modified K0.5Na0.5NbO3 Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Iacomini, Antonio ; Garroni, Sebastiano ; Senes, Nina ; Mulas, Gabriele ; Enzo, Stefano ; Poddighe, Matteo ; García, Álvaro ; Bartolomé, José F. ; Pardo, Lorena</creator><creatorcontrib>Iacomini, Antonio ; Garroni, Sebastiano ; Senes, Nina ; Mulas, Gabriele ; Enzo, Stefano ; Poddighe, Matteo ; García, Álvaro ; Bartolomé, José F. ; Pardo, Lorena</creatorcontrib><description>In this work, piezoceramics of the lead‐free composition K0.5Na0.5NbO3 with an increasing amount of MgNb2O6 (0, 0.5, 1, 2 wt.%) were prepared through conventional solid‐state synthesis and sintered in air atmosphere at 1100 °C. The effect of magnesium niobate addition on structure, microstructure and piezoelectric properties was evaluated. The ceramics maintain the orthorhombic Amm2 phase for all compositions, while an orthorhombic Pbcm secondary phase was found for increasing the concentration of MgNb2O6. Our results show that densification of these ceramics can be significantly improved up to 94.9 % of theoretical density by adding a small amount of magnesium‐based oxide (1 wt.%). Scanning electron microscopy morphology of the 1 wt.% system reveals a well‐packed structure with homogeneous grain size of ∼2.72 μm. Dielectric and piezoelectric properties become optimal for 0.5–1.0 wt.% of MgNb2O6 that shows, with respect to the unmodified composition, either higher piezoelectric coefficients, lower anisotropy and relatively low piezoelectric losses (d33=97 pC N−1; d31=−36.99 pC N−1 and g31=−14.04×10−3 mV N−1; Qp(d31)=76 and Qp(g31)=69) or enhanced electromechanical coupling factors (kp=29.06 % and k31=17.25 %).
Piezoceramics K0.5Na0.5NbO3 (KNN) have been fabricated with increasing amounts of MgNb2O6 (MN). The synthesis approach involves a combination of mechanochemical‐assisted activation method and air sintering. The addition of MN reduces the size of grain, improve the density and increase the crystalline disorder of KNN. Furthermore, an increase in the piezoelectric response is found between 0.5–1 wt.% of MN.</description><identifier>ISSN: 2191-1363</identifier><identifier>EISSN: 2191-1363</identifier><identifier>DOI: 10.1002/open.202100089</identifier><identifier>PMID: 34402600</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Anisotropy ; Chemistry ; Chemistry, Multidisciplinary ; Composition ; Densification ; Dielectric properties ; Grain size ; lead free compounds ; Magnesium niobates ; mechanochemistry ; Morphology ; Physical Sciences ; Piezoelectric ceramics ; Piezoelectricity ; Potassium ; Science & Technology ; Sintering ; sintering additives ; solid-state synthesis ; Temperature ; Theoretical density</subject><ispartof>ChemistryOpen (Weinheim), 2021-08, Vol.10 (8), p.798-805</ispartof><rights>2021 The Authors. Published by Wiley-VCH GmbH</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000688713800015</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-d3949-c521c50d3d67b2ff34581019cf6b3e29de2c71e63ea1104b8aade56848c4ff6e3</cites><orcidid>0000-0002-3628-5269 ; 0000-0001-7686-6589 ; 0000-0003-1731-0657 ; 0000-0003-1644-2092 ; 0000-0002-7515-4202 ; 0000-0002-6580-8129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369846/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369846/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,2103,2115,11567,27929,27930,39263,45579,45580,46057,46481,53796,53798</link.rule.ids></links><search><creatorcontrib>Iacomini, Antonio</creatorcontrib><creatorcontrib>Garroni, Sebastiano</creatorcontrib><creatorcontrib>Senes, Nina</creatorcontrib><creatorcontrib>Mulas, Gabriele</creatorcontrib><creatorcontrib>Enzo, Stefano</creatorcontrib><creatorcontrib>Poddighe, Matteo</creatorcontrib><creatorcontrib>García, Álvaro</creatorcontrib><creatorcontrib>Bartolomé, José F.</creatorcontrib><creatorcontrib>Pardo, Lorena</creatorcontrib><title>MgNb2O6 Modified K0.5Na0.5NbO3 Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance</title><title>ChemistryOpen (Weinheim)</title><addtitle>CHEMISTRYOPEN</addtitle><description>In this work, piezoceramics of the lead‐free composition K0.5Na0.5NbO3 with an increasing amount of MgNb2O6 (0, 0.5, 1, 2 wt.%) were prepared through conventional solid‐state synthesis and sintered in air atmosphere at 1100 °C. The effect of magnesium niobate addition on structure, microstructure and piezoelectric properties was evaluated. The ceramics maintain the orthorhombic Amm2 phase for all compositions, while an orthorhombic Pbcm secondary phase was found for increasing the concentration of MgNb2O6. Our results show that densification of these ceramics can be significantly improved up to 94.9 % of theoretical density by adding a small amount of magnesium‐based oxide (1 wt.%). Scanning electron microscopy morphology of the 1 wt.% system reveals a well‐packed structure with homogeneous grain size of ∼2.72 μm. Dielectric and piezoelectric properties become optimal for 0.5–1.0 wt.% of MgNb2O6 that shows, with respect to the unmodified composition, either higher piezoelectric coefficients, lower anisotropy and relatively low piezoelectric losses (d33=97 pC N−1; d31=−36.99 pC N−1 and g31=−14.04×10−3 mV N−1; Qp(d31)=76 and Qp(g31)=69) or enhanced electromechanical coupling factors (kp=29.06 % and k31=17.25 %).
Piezoceramics K0.5Na0.5NbO3 (KNN) have been fabricated with increasing amounts of MgNb2O6 (MN). The synthesis approach involves a combination of mechanochemical‐assisted activation method and air sintering. The addition of MN reduces the size of grain, improve the density and increase the crystalline disorder of KNN. Furthermore, an increase in the piezoelectric response is found between 0.5–1 wt.% of MN.</description><subject>Anisotropy</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Composition</subject><subject>Densification</subject><subject>Dielectric properties</subject><subject>Grain size</subject><subject>lead free compounds</subject><subject>Magnesium niobates</subject><subject>mechanochemistry</subject><subject>Morphology</subject><subject>Physical Sciences</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectricity</subject><subject>Potassium</subject><subject>Science & Technology</subject><subject>Sintering</subject><subject>sintering additives</subject><subject>solid-state synthesis</subject><subject>Temperature</subject><subject>Theoretical density</subject><issn>2191-1363</issn><issn>2191-1363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUstuEzEUHSEQrUq3rC2xhAS_x2aBhEIoEW0SUVhbHvs6OJqM03lAywr-gG_kS3BIFNEdG_ue63PP9X0UxVOCxwRj-jJtoRlTTDPASj8oTinRZESYZA__sU-K865bZwouuSZCPi5OGOeYSoxPi59Xq3lFFxJdJR9DBI8-4LGY291RLRiauvT7x69lhO_JQWs30XWv0LWzta1qQMs2e7suNqsX6LpvB9cPra3R29j1qe1japBtPJqkzbaGWzTbbMHbxgGyPfoIXWp24EnxKNi6g_PDfVZ8fjf9NHk_ulxczCZvLkeeaa5HTlDiBPbMy7KiITAuFMFEuyArBlR7oK4kIBlYQjCvlLUehFRcOR6CBHZWzPa6Ptm12bZxY9s7k2w0fx2pXRmb_-xqMFhXTIlAwFHLtWVahFI55jErra6CzVqv91rbodqAd9D0ue57ovdfmvjFrNJXo5jUisss8Owg0KabAbrerNPQNrl-Q4XkIo-Jl5ml9qxvUKXQuQi5X8cseaBSqZIwlS0iJrG3u5ZP0tD0OfT5_4dmtj6wYw13RxrBZrdnZrdn5rhnZrGczo-I_QElZMZy</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Iacomini, Antonio</creator><creator>Garroni, Sebastiano</creator><creator>Senes, Nina</creator><creator>Mulas, Gabriele</creator><creator>Enzo, Stefano</creator><creator>Poddighe, Matteo</creator><creator>García, Álvaro</creator><creator>Bartolomé, José F.</creator><creator>Pardo, Lorena</creator><general>Wiley</general><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley-VCH</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3628-5269</orcidid><orcidid>https://orcid.org/0000-0001-7686-6589</orcidid><orcidid>https://orcid.org/0000-0003-1731-0657</orcidid><orcidid>https://orcid.org/0000-0003-1644-2092</orcidid><orcidid>https://orcid.org/0000-0002-7515-4202</orcidid><orcidid>https://orcid.org/0000-0002-6580-8129</orcidid></search><sort><creationdate>202108</creationdate><title>MgNb2O6 Modified K0.5Na0.5NbO3 Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance</title><author>Iacomini, Antonio ; Garroni, Sebastiano ; Senes, Nina ; Mulas, Gabriele ; Enzo, Stefano ; Poddighe, Matteo ; García, Álvaro ; Bartolomé, José F. ; Pardo, Lorena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d3949-c521c50d3d67b2ff34581019cf6b3e29de2c71e63ea1104b8aade56848c4ff6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Composition</topic><topic>Densification</topic><topic>Dielectric properties</topic><topic>Grain size</topic><topic>lead free compounds</topic><topic>Magnesium niobates</topic><topic>mechanochemistry</topic><topic>Morphology</topic><topic>Physical Sciences</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectricity</topic><topic>Potassium</topic><topic>Science & Technology</topic><topic>Sintering</topic><topic>sintering additives</topic><topic>solid-state synthesis</topic><topic>Temperature</topic><topic>Theoretical density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iacomini, Antonio</creatorcontrib><creatorcontrib>Garroni, Sebastiano</creatorcontrib><creatorcontrib>Senes, Nina</creatorcontrib><creatorcontrib>Mulas, Gabriele</creatorcontrib><creatorcontrib>Enzo, Stefano</creatorcontrib><creatorcontrib>Poddighe, Matteo</creatorcontrib><creatorcontrib>García, Álvaro</creatorcontrib><creatorcontrib>Bartolomé, José F.</creatorcontrib><creatorcontrib>Pardo, Lorena</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ChemistryOpen (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iacomini, Antonio</au><au>Garroni, Sebastiano</au><au>Senes, Nina</au><au>Mulas, Gabriele</au><au>Enzo, Stefano</au><au>Poddighe, Matteo</au><au>García, Álvaro</au><au>Bartolomé, José F.</au><au>Pardo, Lorena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MgNb2O6 Modified K0.5Na0.5NbO3 Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance</atitle><jtitle>ChemistryOpen (Weinheim)</jtitle><stitle>CHEMISTRYOPEN</stitle><date>2021-08</date><risdate>2021</risdate><volume>10</volume><issue>8</issue><spage>798</spage><epage>805</epage><pages>798-805</pages><issn>2191-1363</issn><eissn>2191-1363</eissn><abstract>In this work, piezoceramics of the lead‐free composition K0.5Na0.5NbO3 with an increasing amount of MgNb2O6 (0, 0.5, 1, 2 wt.%) were prepared through conventional solid‐state synthesis and sintered in air atmosphere at 1100 °C. The effect of magnesium niobate addition on structure, microstructure and piezoelectric properties was evaluated. The ceramics maintain the orthorhombic Amm2 phase for all compositions, while an orthorhombic Pbcm secondary phase was found for increasing the concentration of MgNb2O6. Our results show that densification of these ceramics can be significantly improved up to 94.9 % of theoretical density by adding a small amount of magnesium‐based oxide (1 wt.%). Scanning electron microscopy morphology of the 1 wt.% system reveals a well‐packed structure with homogeneous grain size of ∼2.72 μm. Dielectric and piezoelectric properties become optimal for 0.5–1.0 wt.% of MgNb2O6 that shows, with respect to the unmodified composition, either higher piezoelectric coefficients, lower anisotropy and relatively low piezoelectric losses (d33=97 pC N−1; d31=−36.99 pC N−1 and g31=−14.04×10−3 mV N−1; Qp(d31)=76 and Qp(g31)=69) or enhanced electromechanical coupling factors (kp=29.06 % and k31=17.25 %).
Piezoceramics K0.5Na0.5NbO3 (KNN) have been fabricated with increasing amounts of MgNb2O6 (MN). The synthesis approach involves a combination of mechanochemical‐assisted activation method and air sintering. The addition of MN reduces the size of grain, improve the density and increase the crystalline disorder of KNN. Furthermore, an increase in the piezoelectric response is found between 0.5–1 wt.% of MN.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>34402600</pmid><doi>10.1002/open.202100089</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3628-5269</orcidid><orcidid>https://orcid.org/0000-0001-7686-6589</orcidid><orcidid>https://orcid.org/0000-0003-1731-0657</orcidid><orcidid>https://orcid.org/0000-0003-1644-2092</orcidid><orcidid>https://orcid.org/0000-0002-7515-4202</orcidid><orcidid>https://orcid.org/0000-0002-6580-8129</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2191-1363 |
ispartof | ChemistryOpen (Weinheim), 2021-08, Vol.10 (8), p.798-805 |
issn | 2191-1363 2191-1363 |
language | eng |
recordid | cdi_webofscience_primary_000688713800015CitationCount |
source | DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Anisotropy Chemistry Chemistry, Multidisciplinary Composition Densification Dielectric properties Grain size lead free compounds Magnesium niobates mechanochemistry Morphology Physical Sciences Piezoelectric ceramics Piezoelectricity Potassium Science & Technology Sintering sintering additives solid-state synthesis Temperature Theoretical density |
title | MgNb2O6 Modified K0.5Na0.5NbO3 Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MgNb2O6%20Modified%20K0.5Na0.5NbO3%20Eco%E2%80%90Piezoceramics:%20Scalable%20Processing,%20Structural%20Distortion%20and%20Complex%20Impedance%20at%20Resonance&rft.jtitle=ChemistryOpen%20(Weinheim)&rft.au=Iacomini,%20Antonio&rft.date=2021-08&rft.volume=10&rft.issue=8&rft.spage=798&rft.epage=805&rft.pages=798-805&rft.issn=2191-1363&rft.eissn=2191-1363&rft_id=info:doi/10.1002/open.202100089&rft_dat=%3Cproquest_webof%3E2564515647%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564515647&rft_id=info:pmid/34402600&rft_doaj_id=oai_doaj_org_article_09b385f1ec2a49a395f78c3d037a9bfa&rfr_iscdi=true |