Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions

A hybrid model of nonlinear homogenisation of anisotropic composites was developed, based on the secant Eshelby's model of the second order. At first a scaling factor was determined between constrained strains of matrices of finite and infinite dimensions for an isotropic composite. The scaling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part B, Engineering Engineering, 2021-10, Vol.222, p.109076, Article 109076
1. Verfasser: Fedotov, A.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109076
container_title Composites. Part B, Engineering
container_volume 222
creator Fedotov, A.F.
description A hybrid model of nonlinear homogenisation of anisotropic composites was developed, based on the secant Eshelby's model of the second order. At first a scaling factor was determined between constrained strains of matrices of finite and infinite dimensions for an isotropic composite. The scaling factor was then used to calculate the constrained strain of the matrix and the macrostress of the anisotropic composite. If the calculation results and reference values differ greatly, the scaling factor serves as a fitting parameter. A parametric hybrid model has been developed to predict the properties of composites with different content of inclusions. Good agreement of the calculation results with the numerical solutions of the FEM and experimental data was obtained.
doi_str_mv 10.1016/j.compositesb.2021.109076
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compositesb_2021_109076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836821004601</els_id><sourcerecordid>S1359836821004601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-e12917cf1e0434391367670153b05b81464f1f869a98db50d9440ece1131bbcd3</originalsourceid><addsrcrecordid>eNqNkN1KxDAQhYMouK6-Q3yArpmmTZtLWfyDBW_01tAmU3eWtClJVfbt7bKCXno1f5xzho-xaxArEKBudisb-jEkmjC1q1zkMO-1qNQJW0Bd6QyE0qdzL0ud1VLV5-wipZ0QoihlvmBvj_s2kuN9cOh56PgQBk8DNpFvQx_ecaDUTBSGw62ZhzDFMJLlv7H8i6YtR-9pTIFc4zkN1n-kWZQu2VnX-IRXP3XJXu_vXtaP2eb54Wl9u8mszGHKEHINle0ARSELqUGqSlUCStmKsq2hUEUHXa10o2vXlsLpohBoEUBC21onl0wffW0MKUXszBipb-LegDAHUGZn_oAyB1DmCGrWro9anB_8JIwmWcLBoqOIdjIu0D9cvgE3bXnp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fedotov, A.F.</creator><creatorcontrib>Fedotov, A.F.</creatorcontrib><description>A hybrid model of nonlinear homogenisation of anisotropic composites was developed, based on the secant Eshelby's model of the second order. At first a scaling factor was determined between constrained strains of matrices of finite and infinite dimensions for an isotropic composite. The scaling factor was then used to calculate the constrained strain of the matrix and the macrostress of the anisotropic composite. If the calculation results and reference values differ greatly, the scaling factor serves as a fitting parameter. A parametric hybrid model has been developed to predict the properties of composites with different content of inclusions. Good agreement of the calculation results with the numerical solutions of the FEM and experimental data was obtained.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2021.109076</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anisotropic composite ; Elasto-plastic deformation ; Fitting parameter ; Hybrid model ; Nonlinear homogenisation</subject><ispartof>Composites. Part B, Engineering, 2021-10, Vol.222, p.109076, Article 109076</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-e12917cf1e0434391367670153b05b81464f1f869a98db50d9440ece1131bbcd3</citedby><cites>FETCH-LOGICAL-c321t-e12917cf1e0434391367670153b05b81464f1f869a98db50d9440ece1131bbcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesb.2021.109076$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Fedotov, A.F.</creatorcontrib><title>Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions</title><title>Composites. Part B, Engineering</title><description>A hybrid model of nonlinear homogenisation of anisotropic composites was developed, based on the secant Eshelby's model of the second order. At first a scaling factor was determined between constrained strains of matrices of finite and infinite dimensions for an isotropic composite. The scaling factor was then used to calculate the constrained strain of the matrix and the macrostress of the anisotropic composite. If the calculation results and reference values differ greatly, the scaling factor serves as a fitting parameter. A parametric hybrid model has been developed to predict the properties of composites with different content of inclusions. Good agreement of the calculation results with the numerical solutions of the FEM and experimental data was obtained.</description><subject>Anisotropic composite</subject><subject>Elasto-plastic deformation</subject><subject>Fitting parameter</subject><subject>Hybrid model</subject><subject>Nonlinear homogenisation</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkN1KxDAQhYMouK6-Q3yArpmmTZtLWfyDBW_01tAmU3eWtClJVfbt7bKCXno1f5xzho-xaxArEKBudisb-jEkmjC1q1zkMO-1qNQJW0Bd6QyE0qdzL0ud1VLV5-wipZ0QoihlvmBvj_s2kuN9cOh56PgQBk8DNpFvQx_ecaDUTBSGw62ZhzDFMJLlv7H8i6YtR-9pTIFc4zkN1n-kWZQu2VnX-IRXP3XJXu_vXtaP2eb54Wl9u8mszGHKEHINle0ARSELqUGqSlUCStmKsq2hUEUHXa10o2vXlsLpohBoEUBC21onl0wffW0MKUXszBipb-LegDAHUGZn_oAyB1DmCGrWro9anB_8JIwmWcLBoqOIdjIu0D9cvgE3bXnp</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Fedotov, A.F.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions</title><author>Fedotov, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-e12917cf1e0434391367670153b05b81464f1f869a98db50d9440ece1131bbcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropic composite</topic><topic>Elasto-plastic deformation</topic><topic>Fitting parameter</topic><topic>Hybrid model</topic><topic>Nonlinear homogenisation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedotov, A.F.</creatorcontrib><collection>CrossRef</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedotov, A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>222</volume><spage>109076</spage><pages>109076-</pages><artnum>109076</artnum><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>A hybrid model of nonlinear homogenisation of anisotropic composites was developed, based on the secant Eshelby's model of the second order. At first a scaling factor was determined between constrained strains of matrices of finite and infinite dimensions for an isotropic composite. The scaling factor was then used to calculate the constrained strain of the matrix and the macrostress of the anisotropic composite. If the calculation results and reference values differ greatly, the scaling factor serves as a fitting parameter. A parametric hybrid model has been developed to predict the properties of composites with different content of inclusions. Good agreement of the calculation results with the numerical solutions of the FEM and experimental data was obtained.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2021.109076</doi></addata></record>
fulltext fulltext
identifier ISSN: 1359-8368
ispartof Composites. Part B, Engineering, 2021-10, Vol.222, p.109076, Article 109076
issn 1359-8368
1879-1069
language eng
recordid cdi_crossref_primary_10_1016_j_compositesb_2021_109076
source ScienceDirect Journals (5 years ago - present)
subjects Anisotropic composite
Elasto-plastic deformation
Fitting parameter
Hybrid model
Nonlinear homogenisation
title Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20model%20of%20nonlinear%20homogenisation%20of%20anisotropic%20composites%20with%20ellipsoidal%20inclusions&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Fedotov,%20A.F.&rft.date=2021-10-01&rft.volume=222&rft.spage=109076&rft.pages=109076-&rft.artnum=109076&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2021.109076&rft_dat=%3Celsevier_cross%3ES1359836821004601%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359836821004601&rfr_iscdi=true