Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions
A hybrid model of nonlinear homogenisation of anisotropic composites was developed, based on the secant Eshelby's model of the second order. At first a scaling factor was determined between constrained strains of matrices of finite and infinite dimensions for an isotropic composite. The scaling...
Gespeichert in:
Veröffentlicht in: | Composites. Part B, Engineering Engineering, 2021-10, Vol.222, p.109076, Article 109076 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109076 |
container_title | Composites. Part B, Engineering |
container_volume | 222 |
creator | Fedotov, A.F. |
description | A hybrid model of nonlinear homogenisation of anisotropic composites was developed, based on the secant Eshelby's model of the second order. At first a scaling factor was determined between constrained strains of matrices of finite and infinite dimensions for an isotropic composite. The scaling factor was then used to calculate the constrained strain of the matrix and the macrostress of the anisotropic composite. If the calculation results and reference values differ greatly, the scaling factor serves as a fitting parameter. A parametric hybrid model has been developed to predict the properties of composites with different content of inclusions. Good agreement of the calculation results with the numerical solutions of the FEM and experimental data was obtained. |
doi_str_mv | 10.1016/j.compositesb.2021.109076 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_compositesb_2021_109076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836821004601</els_id><sourcerecordid>S1359836821004601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-e12917cf1e0434391367670153b05b81464f1f869a98db50d9440ece1131bbcd3</originalsourceid><addsrcrecordid>eNqNkN1KxDAQhYMouK6-Q3yArpmmTZtLWfyDBW_01tAmU3eWtClJVfbt7bKCXno1f5xzho-xaxArEKBudisb-jEkmjC1q1zkMO-1qNQJW0Bd6QyE0qdzL0ud1VLV5-wipZ0QoihlvmBvj_s2kuN9cOh56PgQBk8DNpFvQx_ecaDUTBSGw62ZhzDFMJLlv7H8i6YtR-9pTIFc4zkN1n-kWZQu2VnX-IRXP3XJXu_vXtaP2eb54Wl9u8mszGHKEHINle0ARSELqUGqSlUCStmKsq2hUEUHXa10o2vXlsLpohBoEUBC21onl0wffW0MKUXszBipb-LegDAHUGZn_oAyB1DmCGrWro9anB_8JIwmWcLBoqOIdjIu0D9cvgE3bXnp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fedotov, A.F.</creator><creatorcontrib>Fedotov, A.F.</creatorcontrib><description>A hybrid model of nonlinear homogenisation of anisotropic composites was developed, based on the secant Eshelby's model of the second order. At first a scaling factor was determined between constrained strains of matrices of finite and infinite dimensions for an isotropic composite. The scaling factor was then used to calculate the constrained strain of the matrix and the macrostress of the anisotropic composite. If the calculation results and reference values differ greatly, the scaling factor serves as a fitting parameter. A parametric hybrid model has been developed to predict the properties of composites with different content of inclusions. Good agreement of the calculation results with the numerical solutions of the FEM and experimental data was obtained.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2021.109076</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anisotropic composite ; Elasto-plastic deformation ; Fitting parameter ; Hybrid model ; Nonlinear homogenisation</subject><ispartof>Composites. Part B, Engineering, 2021-10, Vol.222, p.109076, Article 109076</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-e12917cf1e0434391367670153b05b81464f1f869a98db50d9440ece1131bbcd3</citedby><cites>FETCH-LOGICAL-c321t-e12917cf1e0434391367670153b05b81464f1f869a98db50d9440ece1131bbcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesb.2021.109076$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Fedotov, A.F.</creatorcontrib><title>Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions</title><title>Composites. Part B, Engineering</title><description>A hybrid model of nonlinear homogenisation of anisotropic composites was developed, based on the secant Eshelby's model of the second order. At first a scaling factor was determined between constrained strains of matrices of finite and infinite dimensions for an isotropic composite. The scaling factor was then used to calculate the constrained strain of the matrix and the macrostress of the anisotropic composite. If the calculation results and reference values differ greatly, the scaling factor serves as a fitting parameter. A parametric hybrid model has been developed to predict the properties of composites with different content of inclusions. Good agreement of the calculation results with the numerical solutions of the FEM and experimental data was obtained.</description><subject>Anisotropic composite</subject><subject>Elasto-plastic deformation</subject><subject>Fitting parameter</subject><subject>Hybrid model</subject><subject>Nonlinear homogenisation</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkN1KxDAQhYMouK6-Q3yArpmmTZtLWfyDBW_01tAmU3eWtClJVfbt7bKCXno1f5xzho-xaxArEKBudisb-jEkmjC1q1zkMO-1qNQJW0Bd6QyE0qdzL0ud1VLV5-wipZ0QoihlvmBvj_s2kuN9cOh56PgQBk8DNpFvQx_ecaDUTBSGw62ZhzDFMJLlv7H8i6YtR-9pTIFc4zkN1n-kWZQu2VnX-IRXP3XJXu_vXtaP2eb54Wl9u8mszGHKEHINle0ARSELqUGqSlUCStmKsq2hUEUHXa10o2vXlsLpohBoEUBC21onl0wffW0MKUXszBipb-LegDAHUGZn_oAyB1DmCGrWro9anB_8JIwmWcLBoqOIdjIu0D9cvgE3bXnp</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Fedotov, A.F.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions</title><author>Fedotov, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-e12917cf1e0434391367670153b05b81464f1f869a98db50d9440ece1131bbcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropic composite</topic><topic>Elasto-plastic deformation</topic><topic>Fitting parameter</topic><topic>Hybrid model</topic><topic>Nonlinear homogenisation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedotov, A.F.</creatorcontrib><collection>CrossRef</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedotov, A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>222</volume><spage>109076</spage><pages>109076-</pages><artnum>109076</artnum><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>A hybrid model of nonlinear homogenisation of anisotropic composites was developed, based on the secant Eshelby's model of the second order. At first a scaling factor was determined between constrained strains of matrices of finite and infinite dimensions for an isotropic composite. The scaling factor was then used to calculate the constrained strain of the matrix and the macrostress of the anisotropic composite. If the calculation results and reference values differ greatly, the scaling factor serves as a fitting parameter. A parametric hybrid model has been developed to predict the properties of composites with different content of inclusions. Good agreement of the calculation results with the numerical solutions of the FEM and experimental data was obtained.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2021.109076</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-8368 |
ispartof | Composites. Part B, Engineering, 2021-10, Vol.222, p.109076, Article 109076 |
issn | 1359-8368 1879-1069 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_compositesb_2021_109076 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Anisotropic composite Elasto-plastic deformation Fitting parameter Hybrid model Nonlinear homogenisation |
title | Hybrid model of nonlinear homogenisation of anisotropic composites with ellipsoidal inclusions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20model%20of%20nonlinear%20homogenisation%20of%20anisotropic%20composites%20with%20ellipsoidal%20inclusions&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Fedotov,%20A.F.&rft.date=2021-10-01&rft.volume=222&rft.spage=109076&rft.pages=109076-&rft.artnum=109076&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2021.109076&rft_dat=%3Celsevier_cross%3ES1359836821004601%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359836821004601&rfr_iscdi=true |