Linking a Consortium-Wide Data Quality Assessment Tool with the MIRACUM Metadata Repository

Abstract Background  Many research initiatives aim at using data from electronic health records (EHRs) in observational studies. Participating sites of the German Medical Informatics Initiative (MII) established data integration centers to integrate EHR data within research data repositories to supp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied clinical informatics 2021-08, Vol.12 (4), p.826-835
Hauptverfasser: Kapsner, Lorenz A., Mang, Jonathan M., Mate, Sebastian, Seuchter, Susanne A., Vengadeswaran, Abishaa, Bathelt, Franziska, Deppenwiese, Noemi, Kadioglu, Dennis, Kraska, Detlef, Prokosch, Hans-Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background  Many research initiatives aim at using data from electronic health records (EHRs) in observational studies. Participating sites of the German Medical Informatics Initiative (MII) established data integration centers to integrate EHR data within research data repositories to support local and federated analyses. To address concerns regarding possible data quality (DQ) issues of hospital routine data compared with data specifically collected for scientific purposes, we have previously presented a data quality assessment (DQA) tool providing a standardized approach to assess DQ of the research data repositories at the MIRACUM consortium's partner sites. Objectives  Major limitations of the former approach included manual interpretation of the results and hard coding of analyses, making their expansion to new data elements and databases time-consuming and error prone. We here present an enhanced version of the DQA tool by linking it to common data element definitions stored in a metadata repository (MDR), adopting the harmonized DQA framework from Kahn et al and its application within the MIRACUM consortium. Methods  Data quality checks were consequently aligned to a harmonized DQA terminology. Database-specific information were systematically identified and represented in an MDR. Furthermore, a structured representation of logical relations between data elements was developed to model plausibility-statements in the MDR. Results  The MIRACUM DQA tool was linked to data element definitions stored in a consortium-wide MDR. Additional databases used within MIRACUM were linked to the DQ checks by extending the respective data elements in the MDR with the required information. The evaluation of DQ checks was automated. An adaptable software implementation is provided with the R package DQAstats . Conclusion  The enhancements of the DQA tool facilitate the future integration of new data elements and make the tool scalable to other databases and data models. It has been provided to all ten MIRACUM partners and was successfully deployed and integrated into their respective data integration center infrastructure.
ISSN:1869-0327
1869-0327
DOI:10.1055/s-0041-1733847