In silico investigation on the inhibitory effect of fungal secondary metabolites on RNA dependent RNA polymerase of SARS-CoV-II: A docking and molecular dynamic simulation study

The newly emerged Coronavirus Disease 2019 (COVID-19) rapidly outspread worldwide and now is one of the biggest infectious pandemics in human society. In this study, the inhibitory potential of 99 secondary metabolites obtained from endophytic fungi was investigated against the new coronavirus RNA-d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2021-08, Vol.135, p.104613-104613, Article 104613
Hauptverfasser: Ebrahimi, Kosar Sadat, Ansari, Mohabbat, Hosseyni Moghaddam, Mahdieh S, Ebrahimi, Zohre, salehi, Zohre, Shahlaei, Mohsen, Moradi, Sajad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104613
container_issue
container_start_page 104613
container_title Computers in biology and medicine
container_volume 135
creator Ebrahimi, Kosar Sadat
Ansari, Mohabbat
Hosseyni Moghaddam, Mahdieh S
Ebrahimi, Zohre
salehi, Zohre
Shahlaei, Mohsen
Moradi, Sajad
description The newly emerged Coronavirus Disease 2019 (COVID-19) rapidly outspread worldwide and now is one of the biggest infectious pandemics in human society. In this study, the inhibitory potential of 99 secondary metabolites obtained from endophytic fungi was investigated against the new coronavirus RNA-dependent RNA polymerase (RdRp) using computational methods. A sequence of blind and targeted molecular dockings was performed to predict the more potent compounds on the viral enzyme. In the next step, the five selected compounds were further evaluated by molecular dynamics (MD) simulation. Moreover, the pharmacokinetics of the metabolites was assessed using SwissADME server. The results of molecular docking showed that compounds 18-methoxy cytochalasin J, (22E,24R)-stigmasta-5,7,22-trien-3-β-ol, beauvericin, dankasterone B, and pyrrocidine A had higher binding energy than others. The findings of MD and SwissADME demonstrated that two fungal metabolites, 18-methoxy cytochalasin J and pyrrocidine A had better results than others in terms of protein instability, strong complex formation, and pharmacokinetic properties. In conclusion, it is recommended to further evaluate the compounds 18-methoxy cytochalasin J and pyrrocidine A in the laboratory as good candidates for inhibiting COVID-19. •Fungal secondary metabolites are tested against coronavirus RdRp computationally.•Docking, molecular dynamic simulation and pharmacokinetic predictions are used in this study.•The results predicted that some of the examined compounds can potentially inhibit this enzyme.
doi_str_mv 10.1016/j.compbiomed.2021.104613
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000687882400003CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521004078</els_id><sourcerecordid>2563179898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-51e424fb4859bfc0e75e8bae189837d79bb3f5a08bbe2c170c08fc1c29225b803</originalsourceid><addsrcrecordid>eNqNUtuO0zAQtRCILYVfQJZ4RCl2rg4PSKXiUmkF0i7watnOpHVJ7G7sFPWz-EOmF7rwBJIlX-ac8Zk5QwjlbMYZL19tZsb3W219D80sZSnH57zk2QMy4aKqE1Zk-UMyYYyzJBdpcUWehLBhjOUsY4_JVZaneSoqNiE_l44G21njqXU7CNGuVLTeUVxxDfi4ttpGP-wptC2YSH1L29GtVEcDGO8ahaEeotK-sxHCgXjzaU4b2IJrwMXjbeu7fQ-DCnDg385vbpOF_5Ysl68pQr35bt2KKtfQ3ndgxk4NtNk71VuD6nq8HzWFODb7p-RRq7oAz877lHx9_-7L4mNy_fnDcjG_TkxRZTEpOGCRrc5FUevWMKgKEFoBF7XIqqaqtc7aQjGhNaSGV8ww0Rpu0jpNCy1YNiVvTnm3o8Y2GyxlUJ3cDrbHkqVXVv4dcXYtV34nsd9lWaaY4MU5weDvRmyt3PhxcKhZIiLjVX2QMiXihDKDD2GA9vIDZ_JgttzIe7PlwWx5Mhupz_9UeCH-dvc-9w_Qvg3GgjNwgeE4lKISIs3xxLKFjccuL_zoIlJf_j8V0W9PaEBDdhYGeWY0dsCZkY23_y7nF5TT5NQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563179898</pqid></control><display><type>article</type><title>In silico investigation on the inhibitory effect of fungal secondary metabolites on RNA dependent RNA polymerase of SARS-CoV-II: A docking and molecular dynamic simulation study</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Ebrahimi, Kosar Sadat ; Ansari, Mohabbat ; Hosseyni Moghaddam, Mahdieh S ; Ebrahimi, Zohre ; salehi, Zohre ; Shahlaei, Mohsen ; Moradi, Sajad</creator><creatorcontrib>Ebrahimi, Kosar Sadat ; Ansari, Mohabbat ; Hosseyni Moghaddam, Mahdieh S ; Ebrahimi, Zohre ; salehi, Zohre ; Shahlaei, Mohsen ; Moradi, Sajad</creatorcontrib><description>The newly emerged Coronavirus Disease 2019 (COVID-19) rapidly outspread worldwide and now is one of the biggest infectious pandemics in human society. In this study, the inhibitory potential of 99 secondary metabolites obtained from endophytic fungi was investigated against the new coronavirus RNA-dependent RNA polymerase (RdRp) using computational methods. A sequence of blind and targeted molecular dockings was performed to predict the more potent compounds on the viral enzyme. In the next step, the five selected compounds were further evaluated by molecular dynamics (MD) simulation. Moreover, the pharmacokinetics of the metabolites was assessed using SwissADME server. The results of molecular docking showed that compounds 18-methoxy cytochalasin J, (22E,24R)-stigmasta-5,7,22-trien-3-β-ol, beauvericin, dankasterone B, and pyrrocidine A had higher binding energy than others. The findings of MD and SwissADME demonstrated that two fungal metabolites, 18-methoxy cytochalasin J and pyrrocidine A had better results than others in terms of protein instability, strong complex formation, and pharmacokinetic properties. In conclusion, it is recommended to further evaluate the compounds 18-methoxy cytochalasin J and pyrrocidine A in the laboratory as good candidates for inhibiting COVID-19. •Fungal secondary metabolites are tested against coronavirus RdRp computationally.•Docking, molecular dynamic simulation and pharmacokinetic predictions are used in this study.•The results predicted that some of the examined compounds can potentially inhibit this enzyme.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.104613</identifier><identifier>PMID: 34242870</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Algorithms ; Antiviral Agents - pharmacology ; Beauvericin ; Biology ; Complex formation ; Computer applications ; Computer Science ; Computer Science, Interdisciplinary Applications ; Coronavirus RNA-Dependent RNA Polymerase - antagonists &amp; inhibitors ; Coronaviruses ; COVID-19 ; DNA-directed RNA polymerase ; Endophytes ; Endophytic fungi ; Energy ; Engineering ; Engineering, Biomedical ; Enzymes ; Evaluation ; Fungi ; Fungi - chemistry ; Genomes ; Life Sciences &amp; Biomedicine ; Life Sciences &amp; Biomedicine - Other Topics ; Ligands ; Mathematical &amp; Computational Biology ; Metabolites ; Molecular docking ; Molecular Docking Simulation ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular modeling ; Nucleotide sequence ; Pandemics ; Pharmacokinetics ; Pharmacology ; Protein structure ; Proteins ; RNA polymerase ; RNA-Dependent RNA Polymerase ; RNA-directed RNA polymerase ; SARS-CoV-2 - drug effects ; Science &amp; Technology ; Secondary metabolite ; Secondary metabolites ; Severe acute respiratory syndrome coronavirus 2 ; Simulation ; Technology ; Viral diseases ; Viruses</subject><ispartof>Computers in biology and medicine, 2021-08, Vol.135, p.104613-104613, Article 104613</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021. Elsevier Ltd</rights><rights>2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000687882400003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c573t-51e424fb4859bfc0e75e8bae189837d79bb3f5a08bbe2c170c08fc1c29225b803</citedby><cites>FETCH-LOGICAL-c573t-51e424fb4859bfc0e75e8bae189837d79bb3f5a08bbe2c170c08fc1c29225b803</cites><orcidid>0000-0001-8833-6235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2563179898?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,39263,46000,64390,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34242870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ebrahimi, Kosar Sadat</creatorcontrib><creatorcontrib>Ansari, Mohabbat</creatorcontrib><creatorcontrib>Hosseyni Moghaddam, Mahdieh S</creatorcontrib><creatorcontrib>Ebrahimi, Zohre</creatorcontrib><creatorcontrib>salehi, Zohre</creatorcontrib><creatorcontrib>Shahlaei, Mohsen</creatorcontrib><creatorcontrib>Moradi, Sajad</creatorcontrib><title>In silico investigation on the inhibitory effect of fungal secondary metabolites on RNA dependent RNA polymerase of SARS-CoV-II: A docking and molecular dynamic simulation study</title><title>Computers in biology and medicine</title><addtitle>COMPUT BIOL MED</addtitle><addtitle>Comput Biol Med</addtitle><description>The newly emerged Coronavirus Disease 2019 (COVID-19) rapidly outspread worldwide and now is one of the biggest infectious pandemics in human society. In this study, the inhibitory potential of 99 secondary metabolites obtained from endophytic fungi was investigated against the new coronavirus RNA-dependent RNA polymerase (RdRp) using computational methods. A sequence of blind and targeted molecular dockings was performed to predict the more potent compounds on the viral enzyme. In the next step, the five selected compounds were further evaluated by molecular dynamics (MD) simulation. Moreover, the pharmacokinetics of the metabolites was assessed using SwissADME server. The results of molecular docking showed that compounds 18-methoxy cytochalasin J, (22E,24R)-stigmasta-5,7,22-trien-3-β-ol, beauvericin, dankasterone B, and pyrrocidine A had higher binding energy than others. The findings of MD and SwissADME demonstrated that two fungal metabolites, 18-methoxy cytochalasin J and pyrrocidine A had better results than others in terms of protein instability, strong complex formation, and pharmacokinetic properties. In conclusion, it is recommended to further evaluate the compounds 18-methoxy cytochalasin J and pyrrocidine A in the laboratory as good candidates for inhibiting COVID-19. •Fungal secondary metabolites are tested against coronavirus RdRp computationally.•Docking, molecular dynamic simulation and pharmacokinetic predictions are used in this study.•The results predicted that some of the examined compounds can potentially inhibit this enzyme.</description><subject>Algorithms</subject><subject>Antiviral Agents - pharmacology</subject><subject>Beauvericin</subject><subject>Biology</subject><subject>Complex formation</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Coronavirus RNA-Dependent RNA Polymerase - antagonists &amp; inhibitors</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>DNA-directed RNA polymerase</subject><subject>Endophytes</subject><subject>Endophytic fungi</subject><subject>Energy</subject><subject>Engineering</subject><subject>Engineering, Biomedical</subject><subject>Enzymes</subject><subject>Evaluation</subject><subject>Fungi</subject><subject>Fungi - chemistry</subject><subject>Genomes</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Life Sciences &amp; Biomedicine - Other Topics</subject><subject>Ligands</subject><subject>Mathematical &amp; Computational Biology</subject><subject>Metabolites</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular modeling</subject><subject>Nucleotide sequence</subject><subject>Pandemics</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>RNA-Dependent RNA Polymerase</subject><subject>RNA-directed RNA polymerase</subject><subject>SARS-CoV-2 - drug effects</subject><subject>Science &amp; Technology</subject><subject>Secondary metabolite</subject><subject>Secondary metabolites</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Simulation</subject><subject>Technology</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNUtuO0zAQtRCILYVfQJZ4RCl2rg4PSKXiUmkF0i7watnOpHVJ7G7sFPWz-EOmF7rwBJIlX-ac8Zk5QwjlbMYZL19tZsb3W219D80sZSnH57zk2QMy4aKqE1Zk-UMyYYyzJBdpcUWehLBhjOUsY4_JVZaneSoqNiE_l44G21njqXU7CNGuVLTeUVxxDfi4ttpGP-wptC2YSH1L29GtVEcDGO8ahaEeotK-sxHCgXjzaU4b2IJrwMXjbeu7fQ-DCnDg385vbpOF_5Ysl68pQr35bt2KKtfQ3ndgxk4NtNk71VuD6nq8HzWFODb7p-RRq7oAz877lHx9_-7L4mNy_fnDcjG_TkxRZTEpOGCRrc5FUevWMKgKEFoBF7XIqqaqtc7aQjGhNaSGV8ww0Rpu0jpNCy1YNiVvTnm3o8Y2GyxlUJ3cDrbHkqVXVv4dcXYtV34nsd9lWaaY4MU5weDvRmyt3PhxcKhZIiLjVX2QMiXihDKDD2GA9vIDZ_JgttzIe7PlwWx5Mhupz_9UeCH-dvc-9w_Qvg3GgjNwgeE4lKISIs3xxLKFjccuL_zoIlJf_j8V0W9PaEBDdhYGeWY0dsCZkY23_y7nF5TT5NQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Ebrahimi, Kosar Sadat</creator><creator>Ansari, Mohabbat</creator><creator>Hosseyni Moghaddam, Mahdieh S</creator><creator>Ebrahimi, Zohre</creator><creator>salehi, Zohre</creator><creator>Shahlaei, Mohsen</creator><creator>Moradi, Sajad</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8833-6235</orcidid></search><sort><creationdate>20210801</creationdate><title>In silico investigation on the inhibitory effect of fungal secondary metabolites on RNA dependent RNA polymerase of SARS-CoV-II: A docking and molecular dynamic simulation study</title><author>Ebrahimi, Kosar Sadat ; Ansari, Mohabbat ; Hosseyni Moghaddam, Mahdieh S ; Ebrahimi, Zohre ; salehi, Zohre ; Shahlaei, Mohsen ; Moradi, Sajad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-51e424fb4859bfc0e75e8bae189837d79bb3f5a08bbe2c170c08fc1c29225b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Antiviral Agents - pharmacology</topic><topic>Beauvericin</topic><topic>Biology</topic><topic>Complex formation</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Coronavirus RNA-Dependent RNA Polymerase - antagonists &amp; inhibitors</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>DNA-directed RNA polymerase</topic><topic>Endophytes</topic><topic>Endophytic fungi</topic><topic>Energy</topic><topic>Engineering</topic><topic>Engineering, Biomedical</topic><topic>Enzymes</topic><topic>Evaluation</topic><topic>Fungi</topic><topic>Fungi - chemistry</topic><topic>Genomes</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Life Sciences &amp; Biomedicine - Other Topics</topic><topic>Ligands</topic><topic>Mathematical &amp; Computational Biology</topic><topic>Metabolites</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular modeling</topic><topic>Nucleotide sequence</topic><topic>Pandemics</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>RNA-Dependent RNA Polymerase</topic><topic>RNA-directed RNA polymerase</topic><topic>SARS-CoV-2 - drug effects</topic><topic>Science &amp; Technology</topic><topic>Secondary metabolite</topic><topic>Secondary metabolites</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Simulation</topic><topic>Technology</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebrahimi, Kosar Sadat</creatorcontrib><creatorcontrib>Ansari, Mohabbat</creatorcontrib><creatorcontrib>Hosseyni Moghaddam, Mahdieh S</creatorcontrib><creatorcontrib>Ebrahimi, Zohre</creatorcontrib><creatorcontrib>salehi, Zohre</creatorcontrib><creatorcontrib>Shahlaei, Mohsen</creatorcontrib><creatorcontrib>Moradi, Sajad</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebrahimi, Kosar Sadat</au><au>Ansari, Mohabbat</au><au>Hosseyni Moghaddam, Mahdieh S</au><au>Ebrahimi, Zohre</au><au>salehi, Zohre</au><au>Shahlaei, Mohsen</au><au>Moradi, Sajad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico investigation on the inhibitory effect of fungal secondary metabolites on RNA dependent RNA polymerase of SARS-CoV-II: A docking and molecular dynamic simulation study</atitle><jtitle>Computers in biology and medicine</jtitle><stitle>COMPUT BIOL MED</stitle><addtitle>Comput Biol Med</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>135</volume><spage>104613</spage><epage>104613</epage><pages>104613-104613</pages><artnum>104613</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>The newly emerged Coronavirus Disease 2019 (COVID-19) rapidly outspread worldwide and now is one of the biggest infectious pandemics in human society. In this study, the inhibitory potential of 99 secondary metabolites obtained from endophytic fungi was investigated against the new coronavirus RNA-dependent RNA polymerase (RdRp) using computational methods. A sequence of blind and targeted molecular dockings was performed to predict the more potent compounds on the viral enzyme. In the next step, the five selected compounds were further evaluated by molecular dynamics (MD) simulation. Moreover, the pharmacokinetics of the metabolites was assessed using SwissADME server. The results of molecular docking showed that compounds 18-methoxy cytochalasin J, (22E,24R)-stigmasta-5,7,22-trien-3-β-ol, beauvericin, dankasterone B, and pyrrocidine A had higher binding energy than others. The findings of MD and SwissADME demonstrated that two fungal metabolites, 18-methoxy cytochalasin J and pyrrocidine A had better results than others in terms of protein instability, strong complex formation, and pharmacokinetic properties. In conclusion, it is recommended to further evaluate the compounds 18-methoxy cytochalasin J and pyrrocidine A in the laboratory as good candidates for inhibiting COVID-19. •Fungal secondary metabolites are tested against coronavirus RdRp computationally.•Docking, molecular dynamic simulation and pharmacokinetic predictions are used in this study.•The results predicted that some of the examined compounds can potentially inhibit this enzyme.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>34242870</pmid><doi>10.1016/j.compbiomed.2021.104613</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8833-6235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2021-08, Vol.135, p.104613-104613, Article 104613
issn 0010-4825
1879-0534
language eng
recordid cdi_webofscience_primary_000687882400003CitationCount
source MEDLINE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Algorithms
Antiviral Agents - pharmacology
Beauvericin
Biology
Complex formation
Computer applications
Computer Science
Computer Science, Interdisciplinary Applications
Coronavirus RNA-Dependent RNA Polymerase - antagonists & inhibitors
Coronaviruses
COVID-19
DNA-directed RNA polymerase
Endophytes
Endophytic fungi
Energy
Engineering
Engineering, Biomedical
Enzymes
Evaluation
Fungi
Fungi - chemistry
Genomes
Life Sciences & Biomedicine
Life Sciences & Biomedicine - Other Topics
Ligands
Mathematical & Computational Biology
Metabolites
Molecular docking
Molecular Docking Simulation
Molecular dynamics
Molecular Dynamics Simulation
Molecular modeling
Nucleotide sequence
Pandemics
Pharmacokinetics
Pharmacology
Protein structure
Proteins
RNA polymerase
RNA-Dependent RNA Polymerase
RNA-directed RNA polymerase
SARS-CoV-2 - drug effects
Science & Technology
Secondary metabolite
Secondary metabolites
Severe acute respiratory syndrome coronavirus 2
Simulation
Technology
Viral diseases
Viruses
title In silico investigation on the inhibitory effect of fungal secondary metabolites on RNA dependent RNA polymerase of SARS-CoV-II: A docking and molecular dynamic simulation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20investigation%20on%20the%20inhibitory%20effect%20of%20fungal%20secondary%20metabolites%20on%20RNA%20dependent%20RNA%20polymerase%20of%20SARS-CoV-II:%20A%20docking%20and%20molecular%20dynamic%20simulation%20study&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Ebrahimi,%20Kosar%20Sadat&rft.date=2021-08-01&rft.volume=135&rft.spage=104613&rft.epage=104613&rft.pages=104613-104613&rft.artnum=104613&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.104613&rft_dat=%3Cproquest_webof%3E2563179898%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563179898&rft_id=info:pmid/34242870&rft_els_id=S0010482521004078&rfr_iscdi=true