Large eddy simulations of high-magnetic Reynolds number magnetohydrodynamic turbulence for non-helical and helical initial conditions: A study of two sub-grid scale models
Pseudo-spectral large eddy simulation (LES) calculations of high-magnetic Reynolds number (Rem) incompressible magnetohydrodynamic (MHD) turbulence are carried out for two initial conditions, namely, the non-helical Orszag–Tang vortex and the strongly helical Arnold–Beltrami–Childress (ABC) flows us...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2021-08, Vol.33 (8), Article 085131 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 33 |
creator | Jadhav, Kiran Chandy, Abhilash J. |
description | Pseudo-spectral large eddy simulation (LES) calculations of high-magnetic Reynolds number (Rem) incompressible magnetohydrodynamic (MHD) turbulence are carried out for two initial conditions, namely, the non-helical Orszag–Tang vortex and the strongly helical Arnold–Beltrami–Childress (ABC) flows using two eddy-viscosity-based sub-grid scale (SGS) approaches: the cross-helicity (CH) and dynamic Smagorinsky (DS) models. Validation is conducted through comparisons of 1923 LES calculations with in-house 5123 direct numerical simulations (DNS) at Reynolds number,
R
e
=
R
e
m
=
800. The results show that the CH model performs better than the DS model. The performance of the SGS models at higher Re is further evaluated by carrying out 3843 LES calculations at
R
e
=
R
e
m
=
7500. Various quantities including turbulent kinetic energy, turbulent magnetic energy, cross-helicity, helicity, vorticity structures, cosine of angle between velocity and magnetic field, cosine of angle between velocity and vorticity field, kinetic and magnetic energy spectra, and energy fluxes are analyzed to understand the capability of the two LES models in predicting the evolution of MHD turbulence. The higher Reynolds number flow shows a delay in the maximum dissipation with increased transfer of energy toward small scales, resulting in a
−
5
/
3 Kolmogorov inertial sub-range scaling. In addition, the effect of Reynolds number on the alignment between velocity and magnetic field, and the energy transfer between kinetic and magnetic energy, is studied. With the ABC flow having strong helicity and zero cross-helicity at low and high Reynolds numbers, a strong dynamo effect is also observed using the LES models, which is consistent with previous DNS. |
doi_str_mv | 10.1063/5.0060925 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000687351200004CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563547267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-93743f45d80f52738ca0bedf8d8f121c922654143303ca57a28bfa02bb97871d3</originalsourceid><addsrcrecordid>eNqNkUtrFEEUhRtRMEYX_oMCVyqd1KPr0e7CoIkwEAhx3VTXY6ZCd9VYj4T-Tf5Ja9JRV4qre6C-c8-lTtO8RfAMQUbO6RmEDPaYPmtOEBR9yxljz4-aw5Yxgl42r1K6gxCSHrOT5sdWxp0BRusFJDeXSWYXfALBgr3b7dtZ7rzJToEbs_gw6QR8mUcTwfoQ9ouOQS9ezpXJJY5lMl4ZYEMEPvh2byan5ASk1-CXdt5lV6cKXrvHuE_gAqRc6g01Nz8EkMrY7qLTIFWDAXPQZkqvmxdWTsm8eZqnzbcvn283V-32-vLr5mLbKoJ5bnvCO2I7qgW0FHMilISj0VZoYRFGqseY0Q51hECiJOUSi9FKiMex54IjTU6bd-veQwzfi0l5uAsl-ho5YMoI7ThmvFLvV0rFkFI0djhEN8u4DAgOxy4GOjx1UVmxsg9mDDYpd_yj33wtgwlOKMJVwW7j8mMJm1B8rtaP_2-t9IeVruC65Z9X_RW-D_EPOBy0JT8BLD-7cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563547267</pqid></control><display><type>article</type><title>Large eddy simulations of high-magnetic Reynolds number magnetohydrodynamic turbulence for non-helical and helical initial conditions: A study of two sub-grid scale models</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Jadhav, Kiran ; Chandy, Abhilash J.</creator><creatorcontrib>Jadhav, Kiran ; Chandy, Abhilash J.</creatorcontrib><description>Pseudo-spectral large eddy simulation (LES) calculations of high-magnetic Reynolds number (Rem) incompressible magnetohydrodynamic (MHD) turbulence are carried out for two initial conditions, namely, the non-helical Orszag–Tang vortex and the strongly helical Arnold–Beltrami–Childress (ABC) flows using two eddy-viscosity-based sub-grid scale (SGS) approaches: the cross-helicity (CH) and dynamic Smagorinsky (DS) models. Validation is conducted through comparisons of 1923 LES calculations with in-house 5123 direct numerical simulations (DNS) at Reynolds number,
R
e
=
R
e
m
=
800. The results show that the CH model performs better than the DS model. The performance of the SGS models at higher Re is further evaluated by carrying out 3843 LES calculations at
R
e
=
R
e
m
=
7500. Various quantities including turbulent kinetic energy, turbulent magnetic energy, cross-helicity, helicity, vorticity structures, cosine of angle between velocity and magnetic field, cosine of angle between velocity and vorticity field, kinetic and magnetic energy spectra, and energy fluxes are analyzed to understand the capability of the two LES models in predicting the evolution of MHD turbulence. The higher Reynolds number flow shows a delay in the maximum dissipation with increased transfer of energy toward small scales, resulting in a
−
5
/
3 Kolmogorov inertial sub-range scaling. In addition, the effect of Reynolds number on the alignment between velocity and magnetic field, and the energy transfer between kinetic and magnetic energy, is studied. With the ABC flow having strong helicity and zero cross-helicity at low and high Reynolds numbers, a strong dynamo effect is also observed using the LES models, which is consistent with previous DNS.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0060925</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Computational fluid dynamics ; Direct numerical simulation ; Energy ; Energy dissipation ; Energy spectra ; Energy transfer ; Fluid dynamics ; Fluid flow ; Helicity ; High Reynolds number ; Initial conditions ; Kinetic energy ; Large eddy simulation ; Magnetic fields ; Magnetohydrodynamic turbulence ; Mathematical models ; Mechanics ; Physical Sciences ; Physics ; Physics, Fluids & Plasmas ; Reynolds number ; Scale models ; Science & Technology ; Technology ; Trigonometric functions ; Turbulent flow ; Vortices ; Vorticity</subject><ispartof>Physics of fluids (1994), 2021-08, Vol.33 (8), Article 085131</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000687351200004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c327t-93743f45d80f52738ca0bedf8d8f121c922654143303ca57a28bfa02bb97871d3</citedby><cites>FETCH-LOGICAL-c327t-93743f45d80f52738ca0bedf8d8f121c922654143303ca57a28bfa02bb97871d3</cites><orcidid>0000-0002-5373-7757 ; 0000-0003-1008-5370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Jadhav, Kiran</creatorcontrib><creatorcontrib>Chandy, Abhilash J.</creatorcontrib><title>Large eddy simulations of high-magnetic Reynolds number magnetohydrodynamic turbulence for non-helical and helical initial conditions: A study of two sub-grid scale models</title><title>Physics of fluids (1994)</title><addtitle>PHYS FLUIDS</addtitle><description>Pseudo-spectral large eddy simulation (LES) calculations of high-magnetic Reynolds number (Rem) incompressible magnetohydrodynamic (MHD) turbulence are carried out for two initial conditions, namely, the non-helical Orszag–Tang vortex and the strongly helical Arnold–Beltrami–Childress (ABC) flows using two eddy-viscosity-based sub-grid scale (SGS) approaches: the cross-helicity (CH) and dynamic Smagorinsky (DS) models. Validation is conducted through comparisons of 1923 LES calculations with in-house 5123 direct numerical simulations (DNS) at Reynolds number,
R
e
=
R
e
m
=
800. The results show that the CH model performs better than the DS model. The performance of the SGS models at higher Re is further evaluated by carrying out 3843 LES calculations at
R
e
=
R
e
m
=
7500. Various quantities including turbulent kinetic energy, turbulent magnetic energy, cross-helicity, helicity, vorticity structures, cosine of angle between velocity and magnetic field, cosine of angle between velocity and vorticity field, kinetic and magnetic energy spectra, and energy fluxes are analyzed to understand the capability of the two LES models in predicting the evolution of MHD turbulence. The higher Reynolds number flow shows a delay in the maximum dissipation with increased transfer of energy toward small scales, resulting in a
−
5
/
3 Kolmogorov inertial sub-range scaling. In addition, the effect of Reynolds number on the alignment between velocity and magnetic field, and the energy transfer between kinetic and magnetic energy, is studied. With the ABC flow having strong helicity and zero cross-helicity at low and high Reynolds numbers, a strong dynamo effect is also observed using the LES models, which is consistent with previous DNS.</description><subject>Computational fluid dynamics</subject><subject>Direct numerical simulation</subject><subject>Energy</subject><subject>Energy dissipation</subject><subject>Energy spectra</subject><subject>Energy transfer</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Helicity</subject><subject>High Reynolds number</subject><subject>Initial conditions</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Fluids & Plasmas</subject><subject>Reynolds number</subject><subject>Scale models</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Trigonometric functions</subject><subject>Turbulent flow</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkUtrFEEUhRtRMEYX_oMCVyqd1KPr0e7CoIkwEAhx3VTXY6ZCd9VYj4T-Tf5Ja9JRV4qre6C-c8-lTtO8RfAMQUbO6RmEDPaYPmtOEBR9yxljz4-aw5Yxgl42r1K6gxCSHrOT5sdWxp0BRusFJDeXSWYXfALBgr3b7dtZ7rzJToEbs_gw6QR8mUcTwfoQ9ouOQS9ezpXJJY5lMl4ZYEMEPvh2byan5ASk1-CXdt5lV6cKXrvHuE_gAqRc6g01Nz8EkMrY7qLTIFWDAXPQZkqvmxdWTsm8eZqnzbcvn283V-32-vLr5mLbKoJ5bnvCO2I7qgW0FHMilISj0VZoYRFGqseY0Q51hECiJOUSi9FKiMex54IjTU6bd-veQwzfi0l5uAsl-ho5YMoI7ThmvFLvV0rFkFI0djhEN8u4DAgOxy4GOjx1UVmxsg9mDDYpd_yj33wtgwlOKMJVwW7j8mMJm1B8rtaP_2-t9IeVruC65Z9X_RW-D_EPOBy0JT8BLD-7cQ</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Jadhav, Kiran</creator><creator>Chandy, Abhilash J.</creator><general>AIP Publishing</general><general>American Institute of Physics</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5373-7757</orcidid><orcidid>https://orcid.org/0000-0003-1008-5370</orcidid></search><sort><creationdate>202108</creationdate><title>Large eddy simulations of high-magnetic Reynolds number magnetohydrodynamic turbulence for non-helical and helical initial conditions: A study of two sub-grid scale models</title><author>Jadhav, Kiran ; Chandy, Abhilash J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-93743f45d80f52738ca0bedf8d8f121c922654143303ca57a28bfa02bb97871d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Direct numerical simulation</topic><topic>Energy</topic><topic>Energy dissipation</topic><topic>Energy spectra</topic><topic>Energy transfer</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Helicity</topic><topic>High Reynolds number</topic><topic>Initial conditions</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Fluids & Plasmas</topic><topic>Reynolds number</topic><topic>Scale models</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Trigonometric functions</topic><topic>Turbulent flow</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jadhav, Kiran</creatorcontrib><creatorcontrib>Chandy, Abhilash J.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jadhav, Kiran</au><au>Chandy, Abhilash J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large eddy simulations of high-magnetic Reynolds number magnetohydrodynamic turbulence for non-helical and helical initial conditions: A study of two sub-grid scale models</atitle><jtitle>Physics of fluids (1994)</jtitle><stitle>PHYS FLUIDS</stitle><date>2021-08</date><risdate>2021</risdate><volume>33</volume><issue>8</issue><artnum>085131</artnum><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Pseudo-spectral large eddy simulation (LES) calculations of high-magnetic Reynolds number (Rem) incompressible magnetohydrodynamic (MHD) turbulence are carried out for two initial conditions, namely, the non-helical Orszag–Tang vortex and the strongly helical Arnold–Beltrami–Childress (ABC) flows using two eddy-viscosity-based sub-grid scale (SGS) approaches: the cross-helicity (CH) and dynamic Smagorinsky (DS) models. Validation is conducted through comparisons of 1923 LES calculations with in-house 5123 direct numerical simulations (DNS) at Reynolds number,
R
e
=
R
e
m
=
800. The results show that the CH model performs better than the DS model. The performance of the SGS models at higher Re is further evaluated by carrying out 3843 LES calculations at
R
e
=
R
e
m
=
7500. Various quantities including turbulent kinetic energy, turbulent magnetic energy, cross-helicity, helicity, vorticity structures, cosine of angle between velocity and magnetic field, cosine of angle between velocity and vorticity field, kinetic and magnetic energy spectra, and energy fluxes are analyzed to understand the capability of the two LES models in predicting the evolution of MHD turbulence. The higher Reynolds number flow shows a delay in the maximum dissipation with increased transfer of energy toward small scales, resulting in a
−
5
/
3 Kolmogorov inertial sub-range scaling. In addition, the effect of Reynolds number on the alignment between velocity and magnetic field, and the energy transfer between kinetic and magnetic energy, is studied. With the ABC flow having strong helicity and zero cross-helicity at low and high Reynolds numbers, a strong dynamo effect is also observed using the LES models, which is consistent with previous DNS.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><doi>10.1063/5.0060925</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5373-7757</orcidid><orcidid>https://orcid.org/0000-0003-1008-5370</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2021-08, Vol.33 (8), Article 085131 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_webofscience_primary_000687351200004CitationCount |
source | AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Computational fluid dynamics Direct numerical simulation Energy Energy dissipation Energy spectra Energy transfer Fluid dynamics Fluid flow Helicity High Reynolds number Initial conditions Kinetic energy Large eddy simulation Magnetic fields Magnetohydrodynamic turbulence Mathematical models Mechanics Physical Sciences Physics Physics, Fluids & Plasmas Reynolds number Scale models Science & Technology Technology Trigonometric functions Turbulent flow Vortices Vorticity |
title | Large eddy simulations of high-magnetic Reynolds number magnetohydrodynamic turbulence for non-helical and helical initial conditions: A study of two sub-grid scale models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20eddy%20simulations%20of%20high-magnetic%20Reynolds%20number%20magnetohydrodynamic%20turbulence%20for%20non-helical%20and%20helical%20initial%20conditions:%20A%20study%20of%20two%20sub-grid%20scale%20models&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Jadhav,%20Kiran&rft.date=2021-08&rft.volume=33&rft.issue=8&rft.artnum=085131&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0060925&rft_dat=%3Cproquest_webof%3E2563547267%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563547267&rft_id=info:pmid/&rfr_iscdi=true |