Approach to Estimate Hydraulic Conductivity Function from Soil–Water Retention Curve for Noncohesive Soils
AbstractPavement materials are prone to damage due to mechanical loadings and rainfall infiltration. The rainfall initiates moisture movement within the layers and accelerates the damaging rate. A better understanding of the moisture flow and damage can be achieved by rigorous and efficient modeling...
Gespeichert in:
Veröffentlicht in: | Journal of materials in civil engineering 2021-10, Vol.33 (10), Article 04021289 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of materials in civil engineering |
container_volume | 33 |
creator | Kalore, Shubham A Sivakumar Babu, G. L Mahajan, Ratnakar R |
description | AbstractPavement materials are prone to damage due to mechanical loadings and rainfall infiltration. The rainfall initiates moisture movement within the layers and accelerates the damaging rate. A better understanding of the moisture flow and damage can be achieved by rigorous and efficient modeling. The hydraulic conductivity function (HCF) is one of the essential soil properties for numerical seepage modeling. Due to the difficulty in direct HCF measurements, it is generally predicted empirically or statistically by integration along the soil-water retention curve (SWRC) based on the fundamentals of fluid flow in porous media. This paper presents an analytical approach to predict the HCF from experimentally obtained data of an SWRC for noncohesive soils. The model is derived based on the Hagen-Poiseuille law and Darcy law and considered the pore size distribution, porosity, and geometry of the soil grains as inputs. The pore size distribution is considered analogous to a normalized SWRC based on the fundamentals of the capillary theory. The proposed model is validated based on a large number of published experimental data of SWRC and HCF, illustrating the robustness of the model. Additionally, the application of the model is presented for the pavement drainage design. |
doi_str_mv | 10.1061/(ASCE)MT.1943-5533.0003917 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000687225200038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556339249</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-e07b67d4456c10044db416d3e8cf14a3e46683bacbec9e5573669c0557a7965d3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEuXxDxZsQCjFjh-J2VVReUgFJFrE0nIcRwSVuNgOqDv-gT_kS3AodIfEymP73Jm5F4ADjIYYcXx6NJoW4-Pr2RALShLGCBkihIjA2QYYrN82wQDlQiSYcbwNdrx_6iFE0QDMR4uFs0o_wmDh2IfmWQUDL5eVU9280bCwbdXp0Lw2YQnPuzaWtoW1s89wapv55_vHQxQ4eGeCab__is69GlhbB29sq-2j8U2897DfA1u1mnuz_3Pugvvz8ay4TCa3F1fFaJIoQrKQGJSVPKsoZVxjhCitSop5RUyua0wVMZTznJRKl0YLw1hGOBcaxUJlgrOK7ILDVd9o7aUzPsgn27k2jpQpY5wQkVIRqbMVpZ313plaLly075YSI9mnK2WfrryeyT5J2Scpf9KN4nwlfjOlrb1uTKvNukGkeJ6lKUt7Pi-aoPpsCtu1IUpP_i-NNF_Rykdq7eN3xb83_AKBvaEm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556339249</pqid></control><display><type>article</type><title>Approach to Estimate Hydraulic Conductivity Function from Soil–Water Retention Curve for Noncohesive Soils</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Kalore, Shubham A ; Sivakumar Babu, G. L ; Mahajan, Ratnakar R</creator><creatorcontrib>Kalore, Shubham A ; Sivakumar Babu, G. L ; Mahajan, Ratnakar R</creatorcontrib><description>AbstractPavement materials are prone to damage due to mechanical loadings and rainfall infiltration. The rainfall initiates moisture movement within the layers and accelerates the damaging rate. A better understanding of the moisture flow and damage can be achieved by rigorous and efficient modeling. The hydraulic conductivity function (HCF) is one of the essential soil properties for numerical seepage modeling. Due to the difficulty in direct HCF measurements, it is generally predicted empirically or statistically by integration along the soil-water retention curve (SWRC) based on the fundamentals of fluid flow in porous media. This paper presents an analytical approach to predict the HCF from experimentally obtained data of an SWRC for noncohesive soils. The model is derived based on the Hagen-Poiseuille law and Darcy law and considered the pore size distribution, porosity, and geometry of the soil grains as inputs. The pore size distribution is considered analogous to a normalized SWRC based on the fundamentals of the capillary theory. The proposed model is validated based on a large number of published experimental data of SWRC and HCF, illustrating the robustness of the model. Additionally, the application of the model is presented for the pavement drainage design.</description><identifier>ISSN: 0899-1561</identifier><identifier>EISSN: 1943-5533</identifier><identifier>DOI: 10.1061/(ASCE)MT.1943-5533.0003917</identifier><language>eng</language><publisher>RESTON: American Society of Civil Engineers</publisher><subject>Building materials ; Civil engineering ; Computational fluid dynamics ; Construction & Building Technology ; Damage ; Darcys law ; Engineering ; Engineering, Civil ; Fluid flow ; Hydraulic conductivity ; Materials Science ; Materials Science, Multidisciplinary ; Moisture ; Pavement materials ; Pavements ; Pore size ; Pore size distribution ; Porosity ; Porous media ; Porous media flow ; Rainfall ; Robustness (mathematics) ; Science & Technology ; Seepage ; Soil mechanics ; Soil porosity ; Soil properties ; Soil water ; Soils ; Technical Papers ; Technology</subject><ispartof>Journal of materials in civil engineering, 2021-10, Vol.33 (10), Article 04021289</ispartof><rights>2021 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000687225200038</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a337t-e07b67d4456c10044db416d3e8cf14a3e46683bacbec9e5573669c0557a7965d3</citedby><cites>FETCH-LOGICAL-a337t-e07b67d4456c10044db416d3e8cf14a3e46683bacbec9e5573669c0557a7965d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)MT.1943-5533.0003917$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0003917$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,39263,76198,76206</link.rule.ids></links><search><creatorcontrib>Kalore, Shubham A</creatorcontrib><creatorcontrib>Sivakumar Babu, G. L</creatorcontrib><creatorcontrib>Mahajan, Ratnakar R</creatorcontrib><title>Approach to Estimate Hydraulic Conductivity Function from Soil–Water Retention Curve for Noncohesive Soils</title><title>Journal of materials in civil engineering</title><addtitle>J MATER CIVIL ENG</addtitle><description>AbstractPavement materials are prone to damage due to mechanical loadings and rainfall infiltration. The rainfall initiates moisture movement within the layers and accelerates the damaging rate. A better understanding of the moisture flow and damage can be achieved by rigorous and efficient modeling. The hydraulic conductivity function (HCF) is one of the essential soil properties for numerical seepage modeling. Due to the difficulty in direct HCF measurements, it is generally predicted empirically or statistically by integration along the soil-water retention curve (SWRC) based on the fundamentals of fluid flow in porous media. This paper presents an analytical approach to predict the HCF from experimentally obtained data of an SWRC for noncohesive soils. The model is derived based on the Hagen-Poiseuille law and Darcy law and considered the pore size distribution, porosity, and geometry of the soil grains as inputs. The pore size distribution is considered analogous to a normalized SWRC based on the fundamentals of the capillary theory. The proposed model is validated based on a large number of published experimental data of SWRC and HCF, illustrating the robustness of the model. Additionally, the application of the model is presented for the pavement drainage design.</description><subject>Building materials</subject><subject>Civil engineering</subject><subject>Computational fluid dynamics</subject><subject>Construction & Building Technology</subject><subject>Damage</subject><subject>Darcys law</subject><subject>Engineering</subject><subject>Engineering, Civil</subject><subject>Fluid flow</subject><subject>Hydraulic conductivity</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Moisture</subject><subject>Pavement materials</subject><subject>Pavements</subject><subject>Pore size</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Porous media flow</subject><subject>Rainfall</subject><subject>Robustness (mathematics)</subject><subject>Science & Technology</subject><subject>Seepage</subject><subject>Soil mechanics</subject><subject>Soil porosity</subject><subject>Soil properties</subject><subject>Soil water</subject><subject>Soils</subject><subject>Technical Papers</subject><subject>Technology</subject><issn>0899-1561</issn><issn>1943-5533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMtOwzAQRS0EEuXxDxZsQCjFjh-J2VVReUgFJFrE0nIcRwSVuNgOqDv-gT_kS3AodIfEymP73Jm5F4ADjIYYcXx6NJoW4-Pr2RALShLGCBkihIjA2QYYrN82wQDlQiSYcbwNdrx_6iFE0QDMR4uFs0o_wmDh2IfmWQUDL5eVU9280bCwbdXp0Lw2YQnPuzaWtoW1s89wapv55_vHQxQ4eGeCab__is69GlhbB29sq-2j8U2897DfA1u1mnuz_3Pugvvz8ay4TCa3F1fFaJIoQrKQGJSVPKsoZVxjhCitSop5RUyua0wVMZTznJRKl0YLw1hGOBcaxUJlgrOK7ILDVd9o7aUzPsgn27k2jpQpY5wQkVIRqbMVpZ313plaLly075YSI9mnK2WfrryeyT5J2Scpf9KN4nwlfjOlrb1uTKvNukGkeJ6lKUt7Pi-aoPpsCtu1IUpP_i-NNF_Rykdq7eN3xb83_AKBvaEm</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kalore, Shubham A</creator><creator>Sivakumar Babu, G. L</creator><creator>Mahajan, Ratnakar R</creator><general>American Society of Civil Engineers</general><general>Asce-Amer Soc Civil Engineers</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20211001</creationdate><title>Approach to Estimate Hydraulic Conductivity Function from Soil–Water Retention Curve for Noncohesive Soils</title><author>Kalore, Shubham A ; Sivakumar Babu, G. L ; Mahajan, Ratnakar R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-e07b67d4456c10044db416d3e8cf14a3e46683bacbec9e5573669c0557a7965d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Building materials</topic><topic>Civil engineering</topic><topic>Computational fluid dynamics</topic><topic>Construction & Building Technology</topic><topic>Damage</topic><topic>Darcys law</topic><topic>Engineering</topic><topic>Engineering, Civil</topic><topic>Fluid flow</topic><topic>Hydraulic conductivity</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Moisture</topic><topic>Pavement materials</topic><topic>Pavements</topic><topic>Pore size</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Porous media flow</topic><topic>Rainfall</topic><topic>Robustness (mathematics)</topic><topic>Science & Technology</topic><topic>Seepage</topic><topic>Soil mechanics</topic><topic>Soil porosity</topic><topic>Soil properties</topic><topic>Soil water</topic><topic>Soils</topic><topic>Technical Papers</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalore, Shubham A</creatorcontrib><creatorcontrib>Sivakumar Babu, G. L</creatorcontrib><creatorcontrib>Mahajan, Ratnakar R</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of materials in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalore, Shubham A</au><au>Sivakumar Babu, G. L</au><au>Mahajan, Ratnakar R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approach to Estimate Hydraulic Conductivity Function from Soil–Water Retention Curve for Noncohesive Soils</atitle><jtitle>Journal of materials in civil engineering</jtitle><stitle>J MATER CIVIL ENG</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>33</volume><issue>10</issue><artnum>04021289</artnum><issn>0899-1561</issn><eissn>1943-5533</eissn><abstract>AbstractPavement materials are prone to damage due to mechanical loadings and rainfall infiltration. The rainfall initiates moisture movement within the layers and accelerates the damaging rate. A better understanding of the moisture flow and damage can be achieved by rigorous and efficient modeling. The hydraulic conductivity function (HCF) is one of the essential soil properties for numerical seepage modeling. Due to the difficulty in direct HCF measurements, it is generally predicted empirically or statistically by integration along the soil-water retention curve (SWRC) based on the fundamentals of fluid flow in porous media. This paper presents an analytical approach to predict the HCF from experimentally obtained data of an SWRC for noncohesive soils. The model is derived based on the Hagen-Poiseuille law and Darcy law and considered the pore size distribution, porosity, and geometry of the soil grains as inputs. The pore size distribution is considered analogous to a normalized SWRC based on the fundamentals of the capillary theory. The proposed model is validated based on a large number of published experimental data of SWRC and HCF, illustrating the robustness of the model. Additionally, the application of the model is presented for the pavement drainage design.</abstract><cop>RESTON</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)MT.1943-5533.0003917</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-1561 |
ispartof | Journal of materials in civil engineering, 2021-10, Vol.33 (10), Article 04021289 |
issn | 0899-1561 1943-5533 |
language | eng |
recordid | cdi_webofscience_primary_000687225200038 |
source | American Society of Civil Engineers:NESLI2:Journals:2014; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Building materials Civil engineering Computational fluid dynamics Construction & Building Technology Damage Darcys law Engineering Engineering, Civil Fluid flow Hydraulic conductivity Materials Science Materials Science, Multidisciplinary Moisture Pavement materials Pavements Pore size Pore size distribution Porosity Porous media Porous media flow Rainfall Robustness (mathematics) Science & Technology Seepage Soil mechanics Soil porosity Soil properties Soil water Soils Technical Papers Technology |
title | Approach to Estimate Hydraulic Conductivity Function from Soil–Water Retention Curve for Noncohesive Soils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approach%20to%20Estimate%20Hydraulic%20Conductivity%20Function%20from%20Soil%E2%80%93Water%20Retention%20Curve%20for%20Noncohesive%20Soils&rft.jtitle=Journal%20of%20materials%20in%20civil%20engineering&rft.au=Kalore,%20Shubham%20A&rft.date=2021-10-01&rft.volume=33&rft.issue=10&rft.artnum=04021289&rft.issn=0899-1561&rft.eissn=1943-5533&rft_id=info:doi/10.1061/(ASCE)MT.1943-5533.0003917&rft_dat=%3Cproquest_webof%3E2556339249%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556339249&rft_id=info:pmid/&rfr_iscdi=true |