Re-engineering transition layers in AlGaN/GaN HEMT on Si for high voltage applications

We report on the study of step-graded AlGaN transition layers (TLs) in metalorganic chemical vapor deposition-grown GaN HEMT-on-silicon toward improving the breakdown field while minimizing buffer-induced current dispersion. The transition layers include three AlGaN epi-layers of 75%, 50%, and 25% A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-08, Vol.130 (7), Article 075702
Hauptverfasser: Remesh, Nayana, Chandrasekar, Hareesh, Venugopalrao, Anirudh, Raghavan, Srinivasan, Rangarajan, Muralidharan, Nath, Digbijoy N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of applied physics
container_volume 130
creator Remesh, Nayana
Chandrasekar, Hareesh
Venugopalrao, Anirudh
Raghavan, Srinivasan
Rangarajan, Muralidharan
Nath, Digbijoy N.
description We report on the study of step-graded AlGaN transition layers (TLs) in metalorganic chemical vapor deposition-grown GaN HEMT-on-silicon toward improving the breakdown field while minimizing buffer-induced current dispersion. The transition layers include three AlGaN epi-layers of 75%, 50%, and 25% Al-content, downgraded from bottom to top. The growth temperature and carbon doping are varied independently to assess the transition layer's role in reducing current collapse and leakage current. We observe that the introduction of High Temperature (HT) AlGaN increases the lateral but decreases the vertical leakage, the latter being attributed to the reduction of V-pit density. Temperature-dependent data indicate that the increased lateral (mesa) leakage current in HT AlGaN layers is due to space charge limited current, the activation energy of which yields the positions of the defect states within the bandgap. The increase in mesa leakage current in HT AlGaN layers is attributed to the formation of point defects such as oxygen in nitrogen site (ON) and VGa–ON complexes. The introduction of C-doping in the top AlGaN transition layer with 25% Al-content helps reduce lateral leakage in both mesa and 3-terminal configurations. The combination of HT AlGaN (75% Al-content) with C-doped AlGaN (25% Al-content) is found to be the optimal TL design that yielded a minimum buffer-induced current dispersion with a 65% channel recovery when the substrate was swept to −300 V and back; moreover, it also enabled a vertical breakdown field of 2.05 MV/cm defined at 1 A/cm2 for a buffer thickness of 1.65 μm.
doi_str_mv 10.1063/5.0045952
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000685806900003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562042659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d5e1c115e36d14151cc6e28ddcf8166f280b804e4f9aca39e29e602546b772553</originalsourceid><addsrcrecordid>eNqN0E1v3CAQBmBUNVK2SQ_5B0g9tZWTARsMx2i1-ZDyIaVJrhaLx7tELrjg3Sr_PiRetadGPSCQeN4ZGEKOGBwzkOWJOAaohBb8A5kxULqohYCPZAbAWaF0rffJp5SeABhTpZ6Rxzss0K-cR4zOr-gYjU9udMHT3jxjTNR5etqfm5uTvOjF4vqe5rsfjnYh0rVbrek29KNZITXD0DtrXrPpkOx1pk_4ebcfkIezxf38ori6Pb-cn14VtuT1WLQCmWVMYClbVjHBrJXIVdvaTjEpO65gqaDCqtPGmlIj1yiBi0ou65oLUR6QL1PdIYZfG0xj8xQ20eeWDReSQ8Wl0Fl9nZSNIaWIXTNE99PE54ZB8zq2RjS7sWWrJvsbl6FL1qG3-McDgFRCgdT5BOXcjW__nYeNH3P0-_9Hs_426QynKu--6p94G-Jf2AxtV74Al4GaPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562042659</pqid></control><display><type>article</type><title>Re-engineering transition layers in AlGaN/GaN HEMT on Si for high voltage applications</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Remesh, Nayana ; Chandrasekar, Hareesh ; Venugopalrao, Anirudh ; Raghavan, Srinivasan ; Rangarajan, Muralidharan ; Nath, Digbijoy N.</creator><creatorcontrib>Remesh, Nayana ; Chandrasekar, Hareesh ; Venugopalrao, Anirudh ; Raghavan, Srinivasan ; Rangarajan, Muralidharan ; Nath, Digbijoy N.</creatorcontrib><description>We report on the study of step-graded AlGaN transition layers (TLs) in metalorganic chemical vapor deposition-grown GaN HEMT-on-silicon toward improving the breakdown field while minimizing buffer-induced current dispersion. The transition layers include three AlGaN epi-layers of 75%, 50%, and 25% Al-content, downgraded from bottom to top. The growth temperature and carbon doping are varied independently to assess the transition layer's role in reducing current collapse and leakage current. We observe that the introduction of High Temperature (HT) AlGaN increases the lateral but decreases the vertical leakage, the latter being attributed to the reduction of V-pit density. Temperature-dependent data indicate that the increased lateral (mesa) leakage current in HT AlGaN layers is due to space charge limited current, the activation energy of which yields the positions of the defect states within the bandgap. The increase in mesa leakage current in HT AlGaN layers is attributed to the formation of point defects such as oxygen in nitrogen site (ON) and VGa–ON complexes. The introduction of C-doping in the top AlGaN transition layer with 25% Al-content helps reduce lateral leakage in both mesa and 3-terminal configurations. The combination of HT AlGaN (75% Al-content) with C-doped AlGaN (25% Al-content) is found to be the optimal TL design that yielded a minimum buffer-induced current dispersion with a 65% channel recovery when the substrate was swept to −300 V and back; moreover, it also enabled a vertical breakdown field of 2.05 MV/cm defined at 1 A/cm2 for a buffer thickness of 1.65 μm.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0045952</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Aluminum gallium nitrides ; Applied physics ; Breakdown ; Buffers ; Dispersion ; Doping ; Gallium nitrides ; High temperature ; Leakage current ; Metalorganic chemical vapor deposition ; Physical Sciences ; Physics ; Physics, Applied ; Point defects ; Science &amp; Technology ; Silicon ; Space charge ; Substrates ; Temperature dependence ; Transition layers</subject><ispartof>Journal of applied physics, 2021-08, Vol.130 (7), Article 075702</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000685806900003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c327t-d5e1c115e36d14151cc6e28ddcf8166f280b804e4f9aca39e29e602546b772553</citedby><cites>FETCH-LOGICAL-c327t-d5e1c115e36d14151cc6e28ddcf8166f280b804e4f9aca39e29e602546b772553</cites><orcidid>0000-0001-9050-9190 ; 0000-0003-3705-5139 ; 0000-0001-7881-3739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0045952$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27928,27929,76388</link.rule.ids></links><search><creatorcontrib>Remesh, Nayana</creatorcontrib><creatorcontrib>Chandrasekar, Hareesh</creatorcontrib><creatorcontrib>Venugopalrao, Anirudh</creatorcontrib><creatorcontrib>Raghavan, Srinivasan</creatorcontrib><creatorcontrib>Rangarajan, Muralidharan</creatorcontrib><creatorcontrib>Nath, Digbijoy N.</creatorcontrib><title>Re-engineering transition layers in AlGaN/GaN HEMT on Si for high voltage applications</title><title>Journal of applied physics</title><addtitle>J APPL PHYS</addtitle><description>We report on the study of step-graded AlGaN transition layers (TLs) in metalorganic chemical vapor deposition-grown GaN HEMT-on-silicon toward improving the breakdown field while minimizing buffer-induced current dispersion. The transition layers include three AlGaN epi-layers of 75%, 50%, and 25% Al-content, downgraded from bottom to top. The growth temperature and carbon doping are varied independently to assess the transition layer's role in reducing current collapse and leakage current. We observe that the introduction of High Temperature (HT) AlGaN increases the lateral but decreases the vertical leakage, the latter being attributed to the reduction of V-pit density. Temperature-dependent data indicate that the increased lateral (mesa) leakage current in HT AlGaN layers is due to space charge limited current, the activation energy of which yields the positions of the defect states within the bandgap. The increase in mesa leakage current in HT AlGaN layers is attributed to the formation of point defects such as oxygen in nitrogen site (ON) and VGa–ON complexes. The introduction of C-doping in the top AlGaN transition layer with 25% Al-content helps reduce lateral leakage in both mesa and 3-terminal configurations. The combination of HT AlGaN (75% Al-content) with C-doped AlGaN (25% Al-content) is found to be the optimal TL design that yielded a minimum buffer-induced current dispersion with a 65% channel recovery when the substrate was swept to −300 V and back; moreover, it also enabled a vertical breakdown field of 2.05 MV/cm defined at 1 A/cm2 for a buffer thickness of 1.65 μm.</description><subject>Aluminum gallium nitrides</subject><subject>Applied physics</subject><subject>Breakdown</subject><subject>Buffers</subject><subject>Dispersion</subject><subject>Doping</subject><subject>Gallium nitrides</subject><subject>High temperature</subject><subject>Leakage current</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Point defects</subject><subject>Science &amp; Technology</subject><subject>Silicon</subject><subject>Space charge</subject><subject>Substrates</subject><subject>Temperature dependence</subject><subject>Transition layers</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0E1v3CAQBmBUNVK2SQ_5B0g9tZWTARsMx2i1-ZDyIaVJrhaLx7tELrjg3Sr_PiRetadGPSCQeN4ZGEKOGBwzkOWJOAaohBb8A5kxULqohYCPZAbAWaF0rffJp5SeABhTpZ6Rxzss0K-cR4zOr-gYjU9udMHT3jxjTNR5etqfm5uTvOjF4vqe5rsfjnYh0rVbrek29KNZITXD0DtrXrPpkOx1pk_4ebcfkIezxf38ori6Pb-cn14VtuT1WLQCmWVMYClbVjHBrJXIVdvaTjEpO65gqaDCqtPGmlIj1yiBi0ou65oLUR6QL1PdIYZfG0xj8xQ20eeWDReSQ8Wl0Fl9nZSNIaWIXTNE99PE54ZB8zq2RjS7sWWrJvsbl6FL1qG3-McDgFRCgdT5BOXcjW__nYeNH3P0-_9Hs_426QynKu--6p94G-Jf2AxtV74Al4GaPg</recordid><startdate>20210821</startdate><enddate>20210821</enddate><creator>Remesh, Nayana</creator><creator>Chandrasekar, Hareesh</creator><creator>Venugopalrao, Anirudh</creator><creator>Raghavan, Srinivasan</creator><creator>Rangarajan, Muralidharan</creator><creator>Nath, Digbijoy N.</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9050-9190</orcidid><orcidid>https://orcid.org/0000-0003-3705-5139</orcidid><orcidid>https://orcid.org/0000-0001-7881-3739</orcidid></search><sort><creationdate>20210821</creationdate><title>Re-engineering transition layers in AlGaN/GaN HEMT on Si for high voltage applications</title><author>Remesh, Nayana ; Chandrasekar, Hareesh ; Venugopalrao, Anirudh ; Raghavan, Srinivasan ; Rangarajan, Muralidharan ; Nath, Digbijoy N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d5e1c115e36d14151cc6e28ddcf8166f280b804e4f9aca39e29e602546b772553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum gallium nitrides</topic><topic>Applied physics</topic><topic>Breakdown</topic><topic>Buffers</topic><topic>Dispersion</topic><topic>Doping</topic><topic>Gallium nitrides</topic><topic>High temperature</topic><topic>Leakage current</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Point defects</topic><topic>Science &amp; Technology</topic><topic>Silicon</topic><topic>Space charge</topic><topic>Substrates</topic><topic>Temperature dependence</topic><topic>Transition layers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remesh, Nayana</creatorcontrib><creatorcontrib>Chandrasekar, Hareesh</creatorcontrib><creatorcontrib>Venugopalrao, Anirudh</creatorcontrib><creatorcontrib>Raghavan, Srinivasan</creatorcontrib><creatorcontrib>Rangarajan, Muralidharan</creatorcontrib><creatorcontrib>Nath, Digbijoy N.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remesh, Nayana</au><au>Chandrasekar, Hareesh</au><au>Venugopalrao, Anirudh</au><au>Raghavan, Srinivasan</au><au>Rangarajan, Muralidharan</au><au>Nath, Digbijoy N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-engineering transition layers in AlGaN/GaN HEMT on Si for high voltage applications</atitle><jtitle>Journal of applied physics</jtitle><stitle>J APPL PHYS</stitle><date>2021-08-21</date><risdate>2021</risdate><volume>130</volume><issue>7</issue><artnum>075702</artnum><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We report on the study of step-graded AlGaN transition layers (TLs) in metalorganic chemical vapor deposition-grown GaN HEMT-on-silicon toward improving the breakdown field while minimizing buffer-induced current dispersion. The transition layers include three AlGaN epi-layers of 75%, 50%, and 25% Al-content, downgraded from bottom to top. The growth temperature and carbon doping are varied independently to assess the transition layer's role in reducing current collapse and leakage current. We observe that the introduction of High Temperature (HT) AlGaN increases the lateral but decreases the vertical leakage, the latter being attributed to the reduction of V-pit density. Temperature-dependent data indicate that the increased lateral (mesa) leakage current in HT AlGaN layers is due to space charge limited current, the activation energy of which yields the positions of the defect states within the bandgap. The increase in mesa leakage current in HT AlGaN layers is attributed to the formation of point defects such as oxygen in nitrogen site (ON) and VGa–ON complexes. The introduction of C-doping in the top AlGaN transition layer with 25% Al-content helps reduce lateral leakage in both mesa and 3-terminal configurations. The combination of HT AlGaN (75% Al-content) with C-doped AlGaN (25% Al-content) is found to be the optimal TL design that yielded a minimum buffer-induced current dispersion with a 65% channel recovery when the substrate was swept to −300 V and back; moreover, it also enabled a vertical breakdown field of 2.05 MV/cm defined at 1 A/cm2 for a buffer thickness of 1.65 μm.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><doi>10.1063/5.0045952</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9050-9190</orcidid><orcidid>https://orcid.org/0000-0003-3705-5139</orcidid><orcidid>https://orcid.org/0000-0001-7881-3739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-08, Vol.130 (7), Article 075702
issn 0021-8979
1089-7550
language eng
recordid cdi_webofscience_primary_000685806900003
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum gallium nitrides
Applied physics
Breakdown
Buffers
Dispersion
Doping
Gallium nitrides
High temperature
Leakage current
Metalorganic chemical vapor deposition
Physical Sciences
Physics
Physics, Applied
Point defects
Science & Technology
Silicon
Space charge
Substrates
Temperature dependence
Transition layers
title Re-engineering transition layers in AlGaN/GaN HEMT on Si for high voltage applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-engineering%20transition%20layers%20in%20AlGaN/GaN%20HEMT%20on%20Si%20for%20high%20voltage%20applications&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Remesh,%20Nayana&rft.date=2021-08-21&rft.volume=130&rft.issue=7&rft.artnum=075702&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0045952&rft_dat=%3Cproquest_webof%3E2562042659%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562042659&rft_id=info:pmid/&rfr_iscdi=true