Thermoelectric characterization of the clathrate-I solid solution Ba8−δAuxGe46−x
Clathrate-I-based materials are promising for waste-heat recovering applications via thermoelectric (TE) effects. However, the lack of highly efficient p-type materials hampers the development of clathrate-based TE devices. In this work, the synthesis of the p-type semiconductor Ba7.8Au5.33Ge40.67 w...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-08, Vol.119 (6), Article 063902 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clathrate-I-based materials are promising for waste-heat recovering applications via thermoelectric (TE) effects. However, the lack of highly efficient p-type materials hampers the development of clathrate-based TE devices. In this work, the synthesis of the p-type semiconductor Ba7.8Au5.33Ge40.67 with clathrate-I structure is up-scaled by steel-quenching and spark plasma sintering treatment at 1073 K. A thermoelectric figure of merit ZT ≈ 0.9 at 670 K is reproducibly obtained, and 40 chemically homogeneous module legs of 5 × 5 × 7 mm3 are fabricated. By using a carbon layer as a diffusion barrier, electrical contacts are sustainable at elevated application temperatures. Eight couples with the clathrate-I compounds Ba7.8Au5.33Ge40.67 as p-type and Ba8Ga16Ge30 as n-type materials are integrated into a TE module with an output power of 0.2 W achieved under a temperature difference ΔT = 380 K (T1 = 673 K and T2 = 293 K). The thermoelectric performance of Ba7.8Au5.33Ge40.67 demonstrates the potential of type-I clathrates for waste heat recycling. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0059166 |