Assessing pesticides exposure effects on the reproductive performance of a declining aerial insectivore

In the context of increasing global environmental changes, it has become progressively important to understand the effects of human activity on wildlife populations. Declines in several avian populations have been observed since the 1970s, especially with respect to many farmland and grassland birds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological applications 2021-10, Vol.31 (7), p.1-13, Article 02415
Hauptverfasser: Poisson, Marie-Christine, Garrett, Daniel R., Sigouin, Audrey, Bélisle, Marc, Garant, Dany, Haroune, Lounès, Bellenger, Jean-Philippe, Pelletier, Fanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the context of increasing global environmental changes, it has become progressively important to understand the effects of human activity on wildlife populations. Declines in several avian populations have been observed since the 1970s, especially with respect to many farmland and grassland birds, which also include some aerial insectivores. Changes in farming practices referred to as agricultural intensification coincide with these major avian declines. Among those practices, increased pesticide use is hypothesized to be a key driver of avian population declines as it can lead to both toxicological and trophic effects. While numerous laboratory studies report that birds experience acute and chronic effects upon consuming pesticide treated food, little is known about the effects of the exposure to multiple pesticides on wildlife in natural settings. We monitored the breeding activities of Tree Swallows (Tachycineta bicolor) on 40 farms distributed over a gradient of agricultural intensification in southern Québec, Canada, to evaluate the presence of pesticides in their diet and quantify the exposure effects of those compounds on their reproductive performance between 2013 and 2018.We first assessed the presence of 54 active agents (or derivatives) found in pesticides in 2,081 food boluses (insects) delivered to nestlings by parents and documented their spatial distribution within our study area. Second, we assessed the effect of pesticide exposure through food (number of active agents detected and number of contaminated boluses on a given farm for a given year, while controlling for sampling effort) on clutch size as well as hatching and fledging successes and nestling’s mass upon fledging. Pesticides were ubiquitous in our study system and nearly half (46%) of food boluses were contaminated by at least one active agent. Yet we found no relationship between our proxies of food contamination by pesticides and Tree Swallow reproductive performance. More studies are needed to better understand the putative role of pesticides in the decline of farmland birds and aerial insectivores as potential sublethal effects of pesticides can carry over to later life stages and impact fitness.
ISSN:1051-0761
1939-5582
DOI:10.1002/eap.2415