Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction
Accelerating the CO2-recycling process is crucial for preventing global warming. Electrochemical reduction allows the efficient conversion of CO2 into useful chemical compounds with catalysts. During the electrolytic synthesis of CO2, an increase in voltage accelerates the synthesis of the target pr...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2021-08, Vol.11 (15), p.9962-9969 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9969 |
---|---|
container_issue | 15 |
container_start_page | 9962 |
container_title | ACS catalysis |
container_volume | 11 |
creator | Jeong, Samuel Ohto, Tatsuhiko Nishiuchi, Tomohiko Nagata, Yuki Fujita, Jun-ichi Ito, Yoshikazu |
description | Accelerating the CO2-recycling process is crucial for preventing global warming. Electrochemical reduction allows the efficient conversion of CO2 into useful chemical compounds with catalysts. During the electrolytic synthesis of CO2, an increase in voltage accelerates the synthesis of the target product and enhances byproduct formation. Previously investigated electrocatalysts do not increase the formation rate with parameter tuning. Herein, we report the development of a polymer-covered Sn catalyst using CO2-absorbable polyethylene glycol (PEG) polymers for the electrochemical reduction of CO2. The catalyst demonstrates high Faradaic efficiencies and doubles the formation rate at −1.2 V (vs RHE) in comparison with that of Sn catalysts. A mechanistic investigation using density functional theory suggests that PEG captures the CO2 molecules and, subsequently, the adsorbed CO2 molecules are transferred to the underlying Sn surface with a low energy barrier. Tuning of the PEG density is vital for a continuous CO2 capture and transfer mechanism that can enhance the catalytic activity. |
doi_str_mv | 10.1021/acscatal.1c02646 |
format | Article |
fullrecord | <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000684035000080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a985700674</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-fe5ac6c151565a50edea8809aad7539fbdc64ac2e8993ffce0613236631ff1393</originalsourceid><addsrcrecordid>eNqNkMFLwzAUh4MoOHR3j7lrZ9I0WXoc1U1hoEw9lzR9YR1dI0mm9r83dVO8COaS8PL7Hu99CF1QMqEkpddKe62CaidUk1Rk4giNUsp5wjPGj3-9T9HY-w2JJ-NCTskIbR9t20NY9y10gBdtr22LC_sGDmr81OFiaNv74PFMa2jBqQA4rAHPrduq0NgOr4aSNYcK4KqPlKviz01jP5oa8ArqnR6y5-jEqNbD-HCfoZf57XNxlywfFvfFbJkolomQGOBKC0055YIrTqAGJSXJlaqnnOWmqrXIlE5B5jkzRgMRlKVMCEaNoSxnZ4js-2pnvXdgylfXbJXrS0rKwVj5baw8GIuI3CPvUFnjdQOdhh8sGhMyI4wP7iQpmvC1e2F3XYjo5f_RmL7ap-MI5cbuXBdN_D3XJztokZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>American Chemical Society Journals</source><creator>Jeong, Samuel ; Ohto, Tatsuhiko ; Nishiuchi, Tomohiko ; Nagata, Yuki ; Fujita, Jun-ichi ; Ito, Yoshikazu</creator><creatorcontrib>Jeong, Samuel ; Ohto, Tatsuhiko ; Nishiuchi, Tomohiko ; Nagata, Yuki ; Fujita, Jun-ichi ; Ito, Yoshikazu</creatorcontrib><description>Accelerating the CO2-recycling process is crucial for preventing global warming. Electrochemical reduction allows the efficient conversion of CO2 into useful chemical compounds with catalysts. During the electrolytic synthesis of CO2, an increase in voltage accelerates the synthesis of the target product and enhances byproduct formation. Previously investigated electrocatalysts do not increase the formation rate with parameter tuning. Herein, we report the development of a polymer-covered Sn catalyst using CO2-absorbable polyethylene glycol (PEG) polymers for the electrochemical reduction of CO2. The catalyst demonstrates high Faradaic efficiencies and doubles the formation rate at −1.2 V (vs RHE) in comparison with that of Sn catalysts. A mechanistic investigation using density functional theory suggests that PEG captures the CO2 molecules and, subsequently, the adsorbed CO2 molecules are transferred to the underlying Sn surface with a low energy barrier. Tuning of the PEG density is vital for a continuous CO2 capture and transfer mechanism that can enhance the catalytic activity.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.1c02646</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Physical ; Physical Sciences ; Science & Technology</subject><ispartof>ACS catalysis, 2021-08, Vol.11 (15), p.9962-9969</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>25</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000684035000080</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a346t-fe5ac6c151565a50edea8809aad7539fbdc64ac2e8993ffce0613236631ff1393</citedby><cites>FETCH-LOGICAL-a346t-fe5ac6c151565a50edea8809aad7539fbdc64ac2e8993ffce0613236631ff1393</cites><orcidid>0000-0003-2231-7271 ; 0000-0001-9727-6641 ; 0000-0001-8059-8396 ; 0000-0002-2113-0731 ; 0000-0001-8681-3800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.1c02646$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.1c02646$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids></links><search><creatorcontrib>Jeong, Samuel</creatorcontrib><creatorcontrib>Ohto, Tatsuhiko</creatorcontrib><creatorcontrib>Nishiuchi, Tomohiko</creatorcontrib><creatorcontrib>Nagata, Yuki</creatorcontrib><creatorcontrib>Fujita, Jun-ichi</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><title>Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction</title><title>ACS catalysis</title><addtitle>ACS CATAL</addtitle><addtitle>ACS Catal</addtitle><description>Accelerating the CO2-recycling process is crucial for preventing global warming. Electrochemical reduction allows the efficient conversion of CO2 into useful chemical compounds with catalysts. During the electrolytic synthesis of CO2, an increase in voltage accelerates the synthesis of the target product and enhances byproduct formation. Previously investigated electrocatalysts do not increase the formation rate with parameter tuning. Herein, we report the development of a polymer-covered Sn catalyst using CO2-absorbable polyethylene glycol (PEG) polymers for the electrochemical reduction of CO2. The catalyst demonstrates high Faradaic efficiencies and doubles the formation rate at −1.2 V (vs RHE) in comparison with that of Sn catalysts. A mechanistic investigation using density functional theory suggests that PEG captures the CO2 molecules and, subsequently, the adsorbed CO2 molecules are transferred to the underlying Sn surface with a low energy barrier. Tuning of the PEG density is vital for a continuous CO2 capture and transfer mechanism that can enhance the catalytic activity.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMFLwzAUh4MoOHR3j7lrZ9I0WXoc1U1hoEw9lzR9YR1dI0mm9r83dVO8COaS8PL7Hu99CF1QMqEkpddKe62CaidUk1Rk4giNUsp5wjPGj3-9T9HY-w2JJ-NCTskIbR9t20NY9y10gBdtr22LC_sGDmr81OFiaNv74PFMa2jBqQA4rAHPrduq0NgOr4aSNYcK4KqPlKviz01jP5oa8ArqnR6y5-jEqNbD-HCfoZf57XNxlywfFvfFbJkolomQGOBKC0055YIrTqAGJSXJlaqnnOWmqrXIlE5B5jkzRgMRlKVMCEaNoSxnZ4js-2pnvXdgylfXbJXrS0rKwVj5baw8GIuI3CPvUFnjdQOdhh8sGhMyI4wP7iQpmvC1e2F3XYjo5f_RmL7ap-MI5cbuXBdN_D3XJztokZ4</recordid><startdate>20210806</startdate><enddate>20210806</enddate><creator>Jeong, Samuel</creator><creator>Ohto, Tatsuhiko</creator><creator>Nishiuchi, Tomohiko</creator><creator>Nagata, Yuki</creator><creator>Fujita, Jun-ichi</creator><creator>Ito, Yoshikazu</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2231-7271</orcidid><orcidid>https://orcid.org/0000-0001-9727-6641</orcidid><orcidid>https://orcid.org/0000-0001-8059-8396</orcidid><orcidid>https://orcid.org/0000-0002-2113-0731</orcidid><orcidid>https://orcid.org/0000-0001-8681-3800</orcidid></search><sort><creationdate>20210806</creationdate><title>Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction</title><author>Jeong, Samuel ; Ohto, Tatsuhiko ; Nishiuchi, Tomohiko ; Nagata, Yuki ; Fujita, Jun-ichi ; Ito, Yoshikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-fe5ac6c151565a50edea8809aad7539fbdc64ac2e8993ffce0613236631ff1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Samuel</creatorcontrib><creatorcontrib>Ohto, Tatsuhiko</creatorcontrib><creatorcontrib>Nishiuchi, Tomohiko</creatorcontrib><creatorcontrib>Nagata, Yuki</creatorcontrib><creatorcontrib>Fujita, Jun-ichi</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Samuel</au><au>Ohto, Tatsuhiko</au><au>Nishiuchi, Tomohiko</au><au>Nagata, Yuki</au><au>Fujita, Jun-ichi</au><au>Ito, Yoshikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction</atitle><jtitle>ACS catalysis</jtitle><stitle>ACS CATAL</stitle><addtitle>ACS Catal</addtitle><date>2021-08-06</date><risdate>2021</risdate><volume>11</volume><issue>15</issue><spage>9962</spage><epage>9969</epage><pages>9962-9969</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Accelerating the CO2-recycling process is crucial for preventing global warming. Electrochemical reduction allows the efficient conversion of CO2 into useful chemical compounds with catalysts. During the electrolytic synthesis of CO2, an increase in voltage accelerates the synthesis of the target product and enhances byproduct formation. Previously investigated electrocatalysts do not increase the formation rate with parameter tuning. Herein, we report the development of a polymer-covered Sn catalyst using CO2-absorbable polyethylene glycol (PEG) polymers for the electrochemical reduction of CO2. The catalyst demonstrates high Faradaic efficiencies and doubles the formation rate at −1.2 V (vs RHE) in comparison with that of Sn catalysts. A mechanistic investigation using density functional theory suggests that PEG captures the CO2 molecules and, subsequently, the adsorbed CO2 molecules are transferred to the underlying Sn surface with a low energy barrier. Tuning of the PEG density is vital for a continuous CO2 capture and transfer mechanism that can enhance the catalytic activity.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.1c02646</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2231-7271</orcidid><orcidid>https://orcid.org/0000-0001-9727-6641</orcidid><orcidid>https://orcid.org/0000-0001-8059-8396</orcidid><orcidid>https://orcid.org/0000-0002-2113-0731</orcidid><orcidid>https://orcid.org/0000-0001-8681-3800</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-5435 |
ispartof | ACS catalysis, 2021-08, Vol.11 (15), p.9962-9969 |
issn | 2155-5435 2155-5435 |
language | eng |
recordid | cdi_webofscience_primary_000684035000080 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals |
subjects | Chemistry Chemistry, Physical Physical Sciences Science & Technology |
title | Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyethylene%20Glycol%20Covered%20Sn%20Catalysts%20Accelerate%20the%20Formation%20Rate%20of%20Formate%20by%20Carbon%20Dioxide%20Reduction&rft.jtitle=ACS%20catalysis&rft.au=Jeong,%20Samuel&rft.date=2021-08-06&rft.volume=11&rft.issue=15&rft.spage=9962&rft.epage=9969&rft.pages=9962-9969&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.1c02646&rft_dat=%3Cacs_webof%3Ea985700674%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |