Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction

Accelerating the CO2-recycling process is crucial for preventing global warming. Electrochemical reduction allows the efficient conversion of CO2 into useful chemical compounds with catalysts. During the electrolytic synthesis of CO2, an increase in voltage accelerates the synthesis of the target pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2021-08, Vol.11 (15), p.9962-9969
Hauptverfasser: Jeong, Samuel, Ohto, Tatsuhiko, Nishiuchi, Tomohiko, Nagata, Yuki, Fujita, Jun-ichi, Ito, Yoshikazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9969
container_issue 15
container_start_page 9962
container_title ACS catalysis
container_volume 11
creator Jeong, Samuel
Ohto, Tatsuhiko
Nishiuchi, Tomohiko
Nagata, Yuki
Fujita, Jun-ichi
Ito, Yoshikazu
description Accelerating the CO2-recycling process is crucial for preventing global warming. Electrochemical reduction allows the efficient conversion of CO2 into useful chemical compounds with catalysts. During the electrolytic synthesis of CO2, an increase in voltage accelerates the synthesis of the target product and enhances byproduct formation. Previously investigated electrocatalysts do not increase the formation rate with parameter tuning. Herein, we report the development of a polymer-covered Sn catalyst using CO2-absorbable polyethylene glycol (PEG) polymers for the electrochemical reduction of CO2. The catalyst demonstrates high Faradaic efficiencies and doubles the formation rate at −1.2 V (vs RHE) in comparison with that of Sn catalysts. A mechanistic investigation using density functional theory suggests that PEG captures the CO2 molecules and, subsequently, the adsorbed CO2 molecules are transferred to the underlying Sn surface with a low energy barrier. Tuning of the PEG density is vital for a continuous CO2 capture and transfer mechanism that can enhance the catalytic activity.
doi_str_mv 10.1021/acscatal.1c02646
format Article
fullrecord <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000684035000080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a985700674</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-fe5ac6c151565a50edea8809aad7539fbdc64ac2e8993ffce0613236631ff1393</originalsourceid><addsrcrecordid>eNqNkMFLwzAUh4MoOHR3j7lrZ9I0WXoc1U1hoEw9lzR9YR1dI0mm9r83dVO8COaS8PL7Hu99CF1QMqEkpddKe62CaidUk1Rk4giNUsp5wjPGj3-9T9HY-w2JJ-NCTskIbR9t20NY9y10gBdtr22LC_sGDmr81OFiaNv74PFMa2jBqQA4rAHPrduq0NgOr4aSNYcK4KqPlKviz01jP5oa8ArqnR6y5-jEqNbD-HCfoZf57XNxlywfFvfFbJkolomQGOBKC0055YIrTqAGJSXJlaqnnOWmqrXIlE5B5jkzRgMRlKVMCEaNoSxnZ4js-2pnvXdgylfXbJXrS0rKwVj5baw8GIuI3CPvUFnjdQOdhh8sGhMyI4wP7iQpmvC1e2F3XYjo5f_RmL7ap-MI5cbuXBdN_D3XJztokZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>American Chemical Society Journals</source><creator>Jeong, Samuel ; Ohto, Tatsuhiko ; Nishiuchi, Tomohiko ; Nagata, Yuki ; Fujita, Jun-ichi ; Ito, Yoshikazu</creator><creatorcontrib>Jeong, Samuel ; Ohto, Tatsuhiko ; Nishiuchi, Tomohiko ; Nagata, Yuki ; Fujita, Jun-ichi ; Ito, Yoshikazu</creatorcontrib><description>Accelerating the CO2-recycling process is crucial for preventing global warming. Electrochemical reduction allows the efficient conversion of CO2 into useful chemical compounds with catalysts. During the electrolytic synthesis of CO2, an increase in voltage accelerates the synthesis of the target product and enhances byproduct formation. Previously investigated electrocatalysts do not increase the formation rate with parameter tuning. Herein, we report the development of a polymer-covered Sn catalyst using CO2-absorbable polyethylene glycol (PEG) polymers for the electrochemical reduction of CO2. The catalyst demonstrates high Faradaic efficiencies and doubles the formation rate at −1.2 V (vs RHE) in comparison with that of Sn catalysts. A mechanistic investigation using density functional theory suggests that PEG captures the CO2 molecules and, subsequently, the adsorbed CO2 molecules are transferred to the underlying Sn surface with a low energy barrier. Tuning of the PEG density is vital for a continuous CO2 capture and transfer mechanism that can enhance the catalytic activity.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.1c02646</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Physical ; Physical Sciences ; Science &amp; Technology</subject><ispartof>ACS catalysis, 2021-08, Vol.11 (15), p.9962-9969</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>25</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000684035000080</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a346t-fe5ac6c151565a50edea8809aad7539fbdc64ac2e8993ffce0613236631ff1393</citedby><cites>FETCH-LOGICAL-a346t-fe5ac6c151565a50edea8809aad7539fbdc64ac2e8993ffce0613236631ff1393</cites><orcidid>0000-0003-2231-7271 ; 0000-0001-9727-6641 ; 0000-0001-8059-8396 ; 0000-0002-2113-0731 ; 0000-0001-8681-3800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.1c02646$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.1c02646$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids></links><search><creatorcontrib>Jeong, Samuel</creatorcontrib><creatorcontrib>Ohto, Tatsuhiko</creatorcontrib><creatorcontrib>Nishiuchi, Tomohiko</creatorcontrib><creatorcontrib>Nagata, Yuki</creatorcontrib><creatorcontrib>Fujita, Jun-ichi</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><title>Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction</title><title>ACS catalysis</title><addtitle>ACS CATAL</addtitle><addtitle>ACS Catal</addtitle><description>Accelerating the CO2-recycling process is crucial for preventing global warming. Electrochemical reduction allows the efficient conversion of CO2 into useful chemical compounds with catalysts. During the electrolytic synthesis of CO2, an increase in voltage accelerates the synthesis of the target product and enhances byproduct formation. Previously investigated electrocatalysts do not increase the formation rate with parameter tuning. Herein, we report the development of a polymer-covered Sn catalyst using CO2-absorbable polyethylene glycol (PEG) polymers for the electrochemical reduction of CO2. The catalyst demonstrates high Faradaic efficiencies and doubles the formation rate at −1.2 V (vs RHE) in comparison with that of Sn catalysts. A mechanistic investigation using density functional theory suggests that PEG captures the CO2 molecules and, subsequently, the adsorbed CO2 molecules are transferred to the underlying Sn surface with a low energy barrier. Tuning of the PEG density is vital for a continuous CO2 capture and transfer mechanism that can enhance the catalytic activity.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMFLwzAUh4MoOHR3j7lrZ9I0WXoc1U1hoEw9lzR9YR1dI0mm9r83dVO8COaS8PL7Hu99CF1QMqEkpddKe62CaidUk1Rk4giNUsp5wjPGj3-9T9HY-w2JJ-NCTskIbR9t20NY9y10gBdtr22LC_sGDmr81OFiaNv74PFMa2jBqQA4rAHPrduq0NgOr4aSNYcK4KqPlKviz01jP5oa8ArqnR6y5-jEqNbD-HCfoZf57XNxlywfFvfFbJkolomQGOBKC0055YIrTqAGJSXJlaqnnOWmqrXIlE5B5jkzRgMRlKVMCEaNoSxnZ4js-2pnvXdgylfXbJXrS0rKwVj5baw8GIuI3CPvUFnjdQOdhh8sGhMyI4wP7iQpmvC1e2F3XYjo5f_RmL7ap-MI5cbuXBdN_D3XJztokZ4</recordid><startdate>20210806</startdate><enddate>20210806</enddate><creator>Jeong, Samuel</creator><creator>Ohto, Tatsuhiko</creator><creator>Nishiuchi, Tomohiko</creator><creator>Nagata, Yuki</creator><creator>Fujita, Jun-ichi</creator><creator>Ito, Yoshikazu</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2231-7271</orcidid><orcidid>https://orcid.org/0000-0001-9727-6641</orcidid><orcidid>https://orcid.org/0000-0001-8059-8396</orcidid><orcidid>https://orcid.org/0000-0002-2113-0731</orcidid><orcidid>https://orcid.org/0000-0001-8681-3800</orcidid></search><sort><creationdate>20210806</creationdate><title>Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction</title><author>Jeong, Samuel ; Ohto, Tatsuhiko ; Nishiuchi, Tomohiko ; Nagata, Yuki ; Fujita, Jun-ichi ; Ito, Yoshikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-fe5ac6c151565a50edea8809aad7539fbdc64ac2e8993ffce0613236631ff1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Samuel</creatorcontrib><creatorcontrib>Ohto, Tatsuhiko</creatorcontrib><creatorcontrib>Nishiuchi, Tomohiko</creatorcontrib><creatorcontrib>Nagata, Yuki</creatorcontrib><creatorcontrib>Fujita, Jun-ichi</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Samuel</au><au>Ohto, Tatsuhiko</au><au>Nishiuchi, Tomohiko</au><au>Nagata, Yuki</au><au>Fujita, Jun-ichi</au><au>Ito, Yoshikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction</atitle><jtitle>ACS catalysis</jtitle><stitle>ACS CATAL</stitle><addtitle>ACS Catal</addtitle><date>2021-08-06</date><risdate>2021</risdate><volume>11</volume><issue>15</issue><spage>9962</spage><epage>9969</epage><pages>9962-9969</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Accelerating the CO2-recycling process is crucial for preventing global warming. Electrochemical reduction allows the efficient conversion of CO2 into useful chemical compounds with catalysts. During the electrolytic synthesis of CO2, an increase in voltage accelerates the synthesis of the target product and enhances byproduct formation. Previously investigated electrocatalysts do not increase the formation rate with parameter tuning. Herein, we report the development of a polymer-covered Sn catalyst using CO2-absorbable polyethylene glycol (PEG) polymers for the electrochemical reduction of CO2. The catalyst demonstrates high Faradaic efficiencies and doubles the formation rate at −1.2 V (vs RHE) in comparison with that of Sn catalysts. A mechanistic investigation using density functional theory suggests that PEG captures the CO2 molecules and, subsequently, the adsorbed CO2 molecules are transferred to the underlying Sn surface with a low energy barrier. Tuning of the PEG density is vital for a continuous CO2 capture and transfer mechanism that can enhance the catalytic activity.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.1c02646</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2231-7271</orcidid><orcidid>https://orcid.org/0000-0001-9727-6641</orcidid><orcidid>https://orcid.org/0000-0001-8059-8396</orcidid><orcidid>https://orcid.org/0000-0002-2113-0731</orcidid><orcidid>https://orcid.org/0000-0001-8681-3800</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2021-08, Vol.11 (15), p.9962-9969
issn 2155-5435
2155-5435
language eng
recordid cdi_webofscience_primary_000684035000080
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals
subjects Chemistry
Chemistry, Physical
Physical Sciences
Science & Technology
title Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyethylene%20Glycol%20Covered%20Sn%20Catalysts%20Accelerate%20the%20Formation%20Rate%20of%20Formate%20by%20Carbon%20Dioxide%20Reduction&rft.jtitle=ACS%20catalysis&rft.au=Jeong,%20Samuel&rft.date=2021-08-06&rft.volume=11&rft.issue=15&rft.spage=9962&rft.epage=9969&rft.pages=9962-9969&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.1c02646&rft_dat=%3Cacs_webof%3Ea985700674%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true