Mechanistic Study of Metal–Ligand Cooperativity in Mn(II)-Catalyzed Hydroborations: Hemilabile SNS Ligand Enables Metal Hydride-Free Reaction Pathway

A combined experimental and mechanistic study of the chemoselective hydroboration of carbonyls by the paramagnetic bis-amido Mn­[SMeNSMe]2 complex (1) is described. The catalyst allows for room-temperature hydroboration of carbonyls at low catalyst loadings (0.1 mol %) and reaction times (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2021-08, Vol.11 (15), p.9043-9051
Hauptverfasser: Elsby, Matthew R, Son, Mina, Oh, Changjin, Martin, Jessica, Baik, Mu-Hyun, Baker, R. Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9051
container_issue 15
container_start_page 9043
container_title ACS catalysis
container_volume 11
creator Elsby, Matthew R
Son, Mina
Oh, Changjin
Martin, Jessica
Baik, Mu-Hyun
Baker, R. Tom
description A combined experimental and mechanistic study of the chemoselective hydroboration of carbonyls by the paramagnetic bis-amido Mn­[SMeNSMe]2 complex (1) is described. The catalyst allows for room-temperature hydroboration of carbonyls at low catalyst loadings (0.1 mol %) and reaction times (
doi_str_mv 10.1021/acscatal.1c02238
format Article
fullrecord <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000684035000008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d166561991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-64e059333ccc2fe9d83f7fe6462a77b25aaef6bf72fcc858d205d187e2a4ff413</originalsourceid><addsrcrecordid>eNqNkLFOwzAQhiMEEhWwM3oEQcBx4sSwoQhopRYQhTm6OGdqFGwUu6Aw8Q4MvB9PQkILYkHCy3n4v_9OXxBsR_Qgoiw6BOkkeKgPIkkZi8VKMGAR5yFPYr76678ebDl3T7uX8FRkdBC8T1DOwGjntSRTP69aYhWZYFf28fo21ndgKpJb-4gNeP2kfUu0IROzMxrthnm_s33BigzbqrGl7TPWuGMyxAddQ6lrJNOLKVn2nBooa3SL-i9GVxieNYjkGkH2LLkCP3uGdjNYU1A73FrOjeD27PQmH4bjy_NRfjIOgQnqwzRByo_iOJZSMoVHlYhVpjBNUgZZVjIOgCotVcaUlIKLilFeRSJDBolSSRRvBHTRKxvrXIOqeGz0AzRtEdGid1t8uy2Wbjtkb4E8Y2mVkxqNxB-sc5uKhMa8t0z7tPh_Otf-y2Bu58Z36P4C7U4o7u28MZ2Jv-_6BFXKoXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic Study of Metal–Ligand Cooperativity in Mn(II)-Catalyzed Hydroborations: Hemilabile SNS Ligand Enables Metal Hydride-Free Reaction Pathway</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Elsby, Matthew R ; Son, Mina ; Oh, Changjin ; Martin, Jessica ; Baik, Mu-Hyun ; Baker, R. Tom</creator><creatorcontrib>Elsby, Matthew R ; Son, Mina ; Oh, Changjin ; Martin, Jessica ; Baik, Mu-Hyun ; Baker, R. Tom</creatorcontrib><description>A combined experimental and mechanistic study of the chemoselective hydroboration of carbonyls by the paramagnetic bis-amido Mn­[SMeNSMe]2 complex (1) is described. The catalyst allows for room-temperature hydroboration of carbonyls at low catalyst loadings (0.1 mol %) and reaction times (&lt;30 min). A series of mechanistic studies highlight the significance of bifunctional amido bis­(thioether) ligand L to the success of the reaction, insight otherwise difficult to attain in paramagnetic systems. Kinetic studies using variable time normalization analysis revealed no unusual reaction kinetics, indicating the absence of side reactions. A borylated analogue of L was observed and characterized via mass spectrometry. Density functional theory (DFT) calculations showed that thioether hemilability of L is crucial during catalysis for providing the active coordinating site. Also, the frequently proposed Mn–H intermediate was found not to be the active species responsible for catalysis. Instead, an inner-sphere reaction pathway with carbonyl coordination to the metal center and amido-promoted B–H reactivity is proposed to be operative.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.1c02238</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Physical ; Physical Sciences ; Science &amp; Technology</subject><ispartof>ACS catalysis, 2021-08, Vol.11 (15), p.9043-9051</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000684035000008</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a280t-64e059333ccc2fe9d83f7fe6462a77b25aaef6bf72fcc858d205d187e2a4ff413</citedby><cites>FETCH-LOGICAL-a280t-64e059333ccc2fe9d83f7fe6462a77b25aaef6bf72fcc858d205d187e2a4ff413</cites><orcidid>0000-0002-5424-6319 ; 0000-0002-7755-0524 ; 0000-0001-5689-1648 ; 0000-0002-8832-8187 ; 0000-0002-1133-7149 ; 0000-1001-5689-1648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.1c02238$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.1c02238$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids></links><search><creatorcontrib>Elsby, Matthew R</creatorcontrib><creatorcontrib>Son, Mina</creatorcontrib><creatorcontrib>Oh, Changjin</creatorcontrib><creatorcontrib>Martin, Jessica</creatorcontrib><creatorcontrib>Baik, Mu-Hyun</creatorcontrib><creatorcontrib>Baker, R. Tom</creatorcontrib><title>Mechanistic Study of Metal–Ligand Cooperativity in Mn(II)-Catalyzed Hydroborations: Hemilabile SNS Ligand Enables Metal Hydride-Free Reaction Pathway</title><title>ACS catalysis</title><addtitle>ACS CATAL</addtitle><addtitle>ACS Catal</addtitle><description>A combined experimental and mechanistic study of the chemoselective hydroboration of carbonyls by the paramagnetic bis-amido Mn­[SMeNSMe]2 complex (1) is described. The catalyst allows for room-temperature hydroboration of carbonyls at low catalyst loadings (0.1 mol %) and reaction times (&lt;30 min). A series of mechanistic studies highlight the significance of bifunctional amido bis­(thioether) ligand L to the success of the reaction, insight otherwise difficult to attain in paramagnetic systems. Kinetic studies using variable time normalization analysis revealed no unusual reaction kinetics, indicating the absence of side reactions. A borylated analogue of L was observed and characterized via mass spectrometry. Density functional theory (DFT) calculations showed that thioether hemilability of L is crucial during catalysis for providing the active coordinating site. Also, the frequently proposed Mn–H intermediate was found not to be the active species responsible for catalysis. Instead, an inner-sphere reaction pathway with carbonyl coordination to the metal center and amido-promoted B–H reactivity is proposed to be operative.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkLFOwzAQhiMEEhWwM3oEQcBx4sSwoQhopRYQhTm6OGdqFGwUu6Aw8Q4MvB9PQkILYkHCy3n4v_9OXxBsR_Qgoiw6BOkkeKgPIkkZi8VKMGAR5yFPYr76678ebDl3T7uX8FRkdBC8T1DOwGjntSRTP69aYhWZYFf28fo21ndgKpJb-4gNeP2kfUu0IROzMxrthnm_s33BigzbqrGl7TPWuGMyxAddQ6lrJNOLKVn2nBooa3SL-i9GVxieNYjkGkH2LLkCP3uGdjNYU1A73FrOjeD27PQmH4bjy_NRfjIOgQnqwzRByo_iOJZSMoVHlYhVpjBNUgZZVjIOgCotVcaUlIKLilFeRSJDBolSSRRvBHTRKxvrXIOqeGz0AzRtEdGid1t8uy2Wbjtkb4E8Y2mVkxqNxB-sc5uKhMa8t0z7tPh_Otf-y2Bu58Z36P4C7U4o7u28MZ2Jv-_6BFXKoXg</recordid><startdate>20210806</startdate><enddate>20210806</enddate><creator>Elsby, Matthew R</creator><creator>Son, Mina</creator><creator>Oh, Changjin</creator><creator>Martin, Jessica</creator><creator>Baik, Mu-Hyun</creator><creator>Baker, R. Tom</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5424-6319</orcidid><orcidid>https://orcid.org/0000-0002-7755-0524</orcidid><orcidid>https://orcid.org/0000-0001-5689-1648</orcidid><orcidid>https://orcid.org/0000-0002-8832-8187</orcidid><orcidid>https://orcid.org/0000-0002-1133-7149</orcidid><orcidid>https://orcid.org/0000-1001-5689-1648</orcidid></search><sort><creationdate>20210806</creationdate><title>Mechanistic Study of Metal–Ligand Cooperativity in Mn(II)-Catalyzed Hydroborations: Hemilabile SNS Ligand Enables Metal Hydride-Free Reaction Pathway</title><author>Elsby, Matthew R ; Son, Mina ; Oh, Changjin ; Martin, Jessica ; Baik, Mu-Hyun ; Baker, R. Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-64e059333ccc2fe9d83f7fe6462a77b25aaef6bf72fcc858d205d187e2a4ff413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elsby, Matthew R</creatorcontrib><creatorcontrib>Son, Mina</creatorcontrib><creatorcontrib>Oh, Changjin</creatorcontrib><creatorcontrib>Martin, Jessica</creatorcontrib><creatorcontrib>Baik, Mu-Hyun</creatorcontrib><creatorcontrib>Baker, R. Tom</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elsby, Matthew R</au><au>Son, Mina</au><au>Oh, Changjin</au><au>Martin, Jessica</au><au>Baik, Mu-Hyun</au><au>Baker, R. Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Study of Metal–Ligand Cooperativity in Mn(II)-Catalyzed Hydroborations: Hemilabile SNS Ligand Enables Metal Hydride-Free Reaction Pathway</atitle><jtitle>ACS catalysis</jtitle><stitle>ACS CATAL</stitle><addtitle>ACS Catal</addtitle><date>2021-08-06</date><risdate>2021</risdate><volume>11</volume><issue>15</issue><spage>9043</spage><epage>9051</epage><pages>9043-9051</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>A combined experimental and mechanistic study of the chemoselective hydroboration of carbonyls by the paramagnetic bis-amido Mn­[SMeNSMe]2 complex (1) is described. The catalyst allows for room-temperature hydroboration of carbonyls at low catalyst loadings (0.1 mol %) and reaction times (&lt;30 min). A series of mechanistic studies highlight the significance of bifunctional amido bis­(thioether) ligand L to the success of the reaction, insight otherwise difficult to attain in paramagnetic systems. Kinetic studies using variable time normalization analysis revealed no unusual reaction kinetics, indicating the absence of side reactions. A borylated analogue of L was observed and characterized via mass spectrometry. Density functional theory (DFT) calculations showed that thioether hemilability of L is crucial during catalysis for providing the active coordinating site. Also, the frequently proposed Mn–H intermediate was found not to be the active species responsible for catalysis. Instead, an inner-sphere reaction pathway with carbonyl coordination to the metal center and amido-promoted B–H reactivity is proposed to be operative.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.1c02238</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5424-6319</orcidid><orcidid>https://orcid.org/0000-0002-7755-0524</orcidid><orcidid>https://orcid.org/0000-0001-5689-1648</orcidid><orcidid>https://orcid.org/0000-0002-8832-8187</orcidid><orcidid>https://orcid.org/0000-0002-1133-7149</orcidid><orcidid>https://orcid.org/0000-1001-5689-1648</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2021-08, Vol.11 (15), p.9043-9051
issn 2155-5435
2155-5435
language eng
recordid cdi_webofscience_primary_000684035000008
source ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Physical
Physical Sciences
Science & Technology
title Mechanistic Study of Metal–Ligand Cooperativity in Mn(II)-Catalyzed Hydroborations: Hemilabile SNS Ligand Enables Metal Hydride-Free Reaction Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T11%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Study%20of%20Metal%E2%80%93Ligand%20Cooperativity%20in%20Mn(II)-Catalyzed%20Hydroborations:%20Hemilabile%20SNS%20Ligand%20Enables%20Metal%20Hydride-Free%20Reaction%20Pathway&rft.jtitle=ACS%20catalysis&rft.au=Elsby,%20Matthew%20R&rft.date=2021-08-06&rft.volume=11&rft.issue=15&rft.spage=9043&rft.epage=9051&rft.pages=9043-9051&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.1c02238&rft_dat=%3Cacs_webof%3Ed166561991%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true