Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents

Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-08, Vol.13 (30), p.35431-35443
Hauptverfasser: Wang, Kebing, Shang, Tengda, Zhang, Lu, Zhou, Lei, Liu, Changqi, Fu, Yudie, Zhao, Yuancong, Li, Xin, Wang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35443
container_issue 30
container_start_page 35431
container_title ACS applied materials & interfaces
container_volume 13
creator Wang, Kebing
Shang, Tengda
Zhang, Lu
Zhou, Lei
Liu, Changqi
Fu, Yudie
Zhao, Yuancong
Li, Xin
Wang, Jin
description Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo.
doi_str_mv 10.1021/acsami.1c08880
format Article
fullrecord <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000683741400017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b320085519</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-60e0558d4ce9a313b0fe79499e2dcfe77e788d63978ba3caa228b3351cb42c3e3</originalsourceid><addsrcrecordid>eNqNkM9LwzAUx4MoTqdXj9Kz0pk0aZseR50_YDLY1GtJ09eR0TWlSdX992brHF4ET-8L7_N9PD4IXRE8Ijggd0IasVYjIjHnHB-hM5Iw5vMgDI4PmbEBOjdmhXFEAxyeogFlFLMwjM6QHTdNpaSwSteeLj3hzUFIqz7Am31tllB7iwakAuPPwTS6NtvNfdst_UnVWVUvvVSL3Sx16y26thQSvBddqPLX1XdhZFcJB1iorblAJ6WoDFzu5xC9PUxe0yd_Ont8TsdTX1CKrR9hwGHICyYhEZTQHJcQJyxJICikizHEnBcRTWKeCyqFCAKeUxoSmbNAUqBDNOrvylYb00KZNa1ai3aTEZxt9WW9vmyvzxWu-0LT5WsoDviPLwfc9sAn5Lo0Tkwt4YBhZ5jTmBHmEokdzf9Pp8rufKW6q62r3vRV92G20l1bO1F_vf0NYi-c6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents</title><source>MEDLINE</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Wang, Kebing ; Shang, Tengda ; Zhang, Lu ; Zhou, Lei ; Liu, Changqi ; Fu, Yudie ; Zhao, Yuancong ; Li, Xin ; Wang, Jin</creator><creatorcontrib>Wang, Kebing ; Shang, Tengda ; Zhang, Lu ; Zhou, Lei ; Liu, Changqi ; Fu, Yudie ; Zhao, Yuancong ; Li, Xin ; Wang, Jin</creatorcontrib><description>Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c08880</identifier><identifier>PMID: 34304556</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject><![CDATA[Animals ; Biological and Medical Applications of Materials and Interfaces ; Catechin - administration & dosage ; Catechin - analogs & derivatives ; Catechin - chemistry ; Catechin - pharmacology ; Cell Movement - drug effects ; Cell Proliferation - drug effects ; Cells, Cultured ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Coronary Restenosis - prevention & control ; Cystamine - administration & dosage ; Cystamine - chemistry ; Drug Liberation ; Drug-Eluting Stents ; Endothelial Cells - cytology ; Endothelial Cells - drug effects ; Macrophages - cytology ; Macrophages - drug effects ; Male ; Materials Science ; Materials Science, Multidisciplinary ; Myocytes, Smooth Muscle - drug effects ; Nanoscience & Nanotechnology ; Neovascularization, Physiologic - drug effects ; Oxidation-Reduction - drug effects ; Quinolines - administration & dosage ; Quinolines - chemistry ; Quinolines - pharmacology ; Rabbits ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species - antagonists & inhibitors ; Science & Technology ; Science & Technology - Other Topics ; Stainless Steel - chemistry ; Technology]]></subject><ispartof>ACS applied materials &amp; interfaces, 2021-08, Vol.13 (30), p.35431-35443</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000683741400017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a330t-60e0558d4ce9a313b0fe79499e2dcfe77e788d63978ba3caa228b3351cb42c3e3</citedby><cites>FETCH-LOGICAL-a330t-60e0558d4ce9a313b0fe79499e2dcfe77e788d63978ba3caa228b3351cb42c3e3</cites><orcidid>0000-0002-8809-4907 ; 0000-0003-3129-4120 ; 0000-0003-4983-7584 ; 0000-0002-5253-3883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c08880$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c08880$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34304556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Kebing</creatorcontrib><creatorcontrib>Shang, Tengda</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Liu, Changqi</creatorcontrib><creatorcontrib>Fu, Yudie</creatorcontrib><creatorcontrib>Zhao, Yuancong</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><title>Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS APPL MATER INTER</addtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo.</description><subject>Animals</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Catechin - administration &amp; dosage</subject><subject>Catechin - analogs &amp; derivatives</subject><subject>Catechin - chemistry</subject><subject>Catechin - pharmacology</subject><subject>Cell Movement - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Coronary Restenosis - prevention &amp; control</subject><subject>Cystamine - administration &amp; dosage</subject><subject>Cystamine - chemistry</subject><subject>Drug Liberation</subject><subject>Drug-Eluting Stents</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - drug effects</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>Male</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Quinolines - administration &amp; dosage</subject><subject>Quinolines - chemistry</subject><subject>Quinolines - pharmacology</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - antagonists &amp; inhibitors</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Stainless Steel - chemistry</subject><subject>Technology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkM9LwzAUx4MoTqdXj9Kz0pk0aZseR50_YDLY1GtJ09eR0TWlSdX992brHF4ET-8L7_N9PD4IXRE8Ijggd0IasVYjIjHnHB-hM5Iw5vMgDI4PmbEBOjdmhXFEAxyeogFlFLMwjM6QHTdNpaSwSteeLj3hzUFIqz7Am31tllB7iwakAuPPwTS6NtvNfdst_UnVWVUvvVSL3Sx16y26thQSvBddqPLX1XdhZFcJB1iorblAJ6WoDFzu5xC9PUxe0yd_Ont8TsdTX1CKrR9hwGHICyYhEZTQHJcQJyxJICikizHEnBcRTWKeCyqFCAKeUxoSmbNAUqBDNOrvylYb00KZNa1ai3aTEZxt9WW9vmyvzxWu-0LT5WsoDviPLwfc9sAn5Lo0Tkwt4YBhZ5jTmBHmEokdzf9Pp8rufKW6q62r3vRV92G20l1bO1F_vf0NYi-c6w</recordid><startdate>20210804</startdate><enddate>20210804</enddate><creator>Wang, Kebing</creator><creator>Shang, Tengda</creator><creator>Zhang, Lu</creator><creator>Zhou, Lei</creator><creator>Liu, Changqi</creator><creator>Fu, Yudie</creator><creator>Zhao, Yuancong</creator><creator>Li, Xin</creator><creator>Wang, Jin</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8809-4907</orcidid><orcidid>https://orcid.org/0000-0003-3129-4120</orcidid><orcidid>https://orcid.org/0000-0003-4983-7584</orcidid><orcidid>https://orcid.org/0000-0002-5253-3883</orcidid></search><sort><creationdate>20210804</creationdate><title>Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents</title><author>Wang, Kebing ; Shang, Tengda ; Zhang, Lu ; Zhou, Lei ; Liu, Changqi ; Fu, Yudie ; Zhao, Yuancong ; Li, Xin ; Wang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-60e0558d4ce9a313b0fe79499e2dcfe77e788d63978ba3caa228b3351cb42c3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Catechin - administration &amp; dosage</topic><topic>Catechin - analogs &amp; derivatives</topic><topic>Catechin - chemistry</topic><topic>Catechin - pharmacology</topic><topic>Cell Movement - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Coronary Restenosis - prevention &amp; control</topic><topic>Cystamine - administration &amp; dosage</topic><topic>Cystamine - chemistry</topic><topic>Drug Liberation</topic><topic>Drug-Eluting Stents</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - drug effects</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>Male</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Quinolines - administration &amp; dosage</topic><topic>Quinolines - chemistry</topic><topic>Quinolines - pharmacology</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - antagonists &amp; inhibitors</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Stainless Steel - chemistry</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kebing</creatorcontrib><creatorcontrib>Shang, Tengda</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Liu, Changqi</creatorcontrib><creatorcontrib>Fu, Yudie</creatorcontrib><creatorcontrib>Zhao, Yuancong</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kebing</au><au>Shang, Tengda</au><au>Zhang, Lu</au><au>Zhou, Lei</au><au>Liu, Changqi</au><au>Fu, Yudie</au><au>Zhao, Yuancong</au><au>Li, Xin</au><au>Wang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><stitle>ACS APPL MATER INTER</stitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-08-04</date><risdate>2021</risdate><volume>13</volume><issue>30</issue><spage>35431</spage><epage>35443</epage><pages>35431-35443</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>34304556</pmid><doi>10.1021/acsami.1c08880</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8809-4907</orcidid><orcidid>https://orcid.org/0000-0003-3129-4120</orcidid><orcidid>https://orcid.org/0000-0003-4983-7584</orcidid><orcidid>https://orcid.org/0000-0002-5253-3883</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-08, Vol.13 (30), p.35431-35443
issn 1944-8244
1944-8252
language eng
recordid cdi_webofscience_primary_000683741400017
source MEDLINE; ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Animals
Biological and Medical Applications of Materials and Interfaces
Catechin - administration & dosage
Catechin - analogs & derivatives
Catechin - chemistry
Catechin - pharmacology
Cell Movement - drug effects
Cell Proliferation - drug effects
Cells, Cultured
Coated Materials, Biocompatible - chemistry
Coated Materials, Biocompatible - pharmacology
Coronary Restenosis - prevention & control
Cystamine - administration & dosage
Cystamine - chemistry
Drug Liberation
Drug-Eluting Stents
Endothelial Cells - cytology
Endothelial Cells - drug effects
Macrophages - cytology
Macrophages - drug effects
Male
Materials Science
Materials Science, Multidisciplinary
Myocytes, Smooth Muscle - drug effects
Nanoscience & Nanotechnology
Neovascularization, Physiologic - drug effects
Oxidation-Reduction - drug effects
Quinolines - administration & dosage
Quinolines - chemistry
Quinolines - pharmacology
Rabbits
Rats
Rats, Sprague-Dawley
Reactive Oxygen Species - antagonists & inhibitors
Science & Technology
Science & Technology - Other Topics
Stainless Steel - chemistry
Technology
title Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20Reactive%20Oxygen%20Species-Responsive%20Drug-Eluting%20Coating%20for%20Surface%20Modification%20of%20Vascular%20Stents&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Kebing&rft.date=2021-08-04&rft.volume=13&rft.issue=30&rft.spage=35431&rft.epage=35443&rft.pages=35431-35443&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c08880&rft_dat=%3Cacs_webof%3Eb320085519%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34304556&rfr_iscdi=true