Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents
Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focu...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-08, Vol.13 (30), p.35431-35443 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35443 |
---|---|
container_issue | 30 |
container_start_page | 35431 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Wang, Kebing Shang, Tengda Zhang, Lu Zhou, Lei Liu, Changqi Fu, Yudie Zhao, Yuancong Li, Xin Wang, Jin |
description | Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo. |
doi_str_mv | 10.1021/acsami.1c08880 |
format | Article |
fullrecord | <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000683741400017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b320085519</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-60e0558d4ce9a313b0fe79499e2dcfe77e788d63978ba3caa228b3351cb42c3e3</originalsourceid><addsrcrecordid>eNqNkM9LwzAUx4MoTqdXj9Kz0pk0aZseR50_YDLY1GtJ09eR0TWlSdX992brHF4ET-8L7_N9PD4IXRE8Ijggd0IasVYjIjHnHB-hM5Iw5vMgDI4PmbEBOjdmhXFEAxyeogFlFLMwjM6QHTdNpaSwSteeLj3hzUFIqz7Am31tllB7iwakAuPPwTS6NtvNfdst_UnVWVUvvVSL3Sx16y26thQSvBddqPLX1XdhZFcJB1iorblAJ6WoDFzu5xC9PUxe0yd_Ont8TsdTX1CKrR9hwGHICyYhEZTQHJcQJyxJICikizHEnBcRTWKeCyqFCAKeUxoSmbNAUqBDNOrvylYb00KZNa1ai3aTEZxt9WW9vmyvzxWu-0LT5WsoDviPLwfc9sAn5Lo0Tkwt4YBhZ5jTmBHmEokdzf9Pp8rufKW6q62r3vRV92G20l1bO1F_vf0NYi-c6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents</title><source>MEDLINE</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Wang, Kebing ; Shang, Tengda ; Zhang, Lu ; Zhou, Lei ; Liu, Changqi ; Fu, Yudie ; Zhao, Yuancong ; Li, Xin ; Wang, Jin</creator><creatorcontrib>Wang, Kebing ; Shang, Tengda ; Zhang, Lu ; Zhou, Lei ; Liu, Changqi ; Fu, Yudie ; Zhao, Yuancong ; Li, Xin ; Wang, Jin</creatorcontrib><description>Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c08880</identifier><identifier>PMID: 34304556</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject><![CDATA[Animals ; Biological and Medical Applications of Materials and Interfaces ; Catechin - administration & dosage ; Catechin - analogs & derivatives ; Catechin - chemistry ; Catechin - pharmacology ; Cell Movement - drug effects ; Cell Proliferation - drug effects ; Cells, Cultured ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Coronary Restenosis - prevention & control ; Cystamine - administration & dosage ; Cystamine - chemistry ; Drug Liberation ; Drug-Eluting Stents ; Endothelial Cells - cytology ; Endothelial Cells - drug effects ; Macrophages - cytology ; Macrophages - drug effects ; Male ; Materials Science ; Materials Science, Multidisciplinary ; Myocytes, Smooth Muscle - drug effects ; Nanoscience & Nanotechnology ; Neovascularization, Physiologic - drug effects ; Oxidation-Reduction - drug effects ; Quinolines - administration & dosage ; Quinolines - chemistry ; Quinolines - pharmacology ; Rabbits ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species - antagonists & inhibitors ; Science & Technology ; Science & Technology - Other Topics ; Stainless Steel - chemistry ; Technology]]></subject><ispartof>ACS applied materials & interfaces, 2021-08, Vol.13 (30), p.35431-35443</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000683741400017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a330t-60e0558d4ce9a313b0fe79499e2dcfe77e788d63978ba3caa228b3351cb42c3e3</citedby><cites>FETCH-LOGICAL-a330t-60e0558d4ce9a313b0fe79499e2dcfe77e788d63978ba3caa228b3351cb42c3e3</cites><orcidid>0000-0002-8809-4907 ; 0000-0003-3129-4120 ; 0000-0003-4983-7584 ; 0000-0002-5253-3883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c08880$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c08880$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34304556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Kebing</creatorcontrib><creatorcontrib>Shang, Tengda</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Liu, Changqi</creatorcontrib><creatorcontrib>Fu, Yudie</creatorcontrib><creatorcontrib>Zhao, Yuancong</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><title>Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents</title><title>ACS applied materials & interfaces</title><addtitle>ACS APPL MATER INTER</addtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo.</description><subject>Animals</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Catechin - administration & dosage</subject><subject>Catechin - analogs & derivatives</subject><subject>Catechin - chemistry</subject><subject>Catechin - pharmacology</subject><subject>Cell Movement - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Coronary Restenosis - prevention & control</subject><subject>Cystamine - administration & dosage</subject><subject>Cystamine - chemistry</subject><subject>Drug Liberation</subject><subject>Drug-Eluting Stents</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - drug effects</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>Male</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Nanoscience & Nanotechnology</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Quinolines - administration & dosage</subject><subject>Quinolines - chemistry</subject><subject>Quinolines - pharmacology</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - antagonists & inhibitors</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Stainless Steel - chemistry</subject><subject>Technology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkM9LwzAUx4MoTqdXj9Kz0pk0aZseR50_YDLY1GtJ09eR0TWlSdX992brHF4ET-8L7_N9PD4IXRE8Ijggd0IasVYjIjHnHB-hM5Iw5vMgDI4PmbEBOjdmhXFEAxyeogFlFLMwjM6QHTdNpaSwSteeLj3hzUFIqz7Am31tllB7iwakAuPPwTS6NtvNfdst_UnVWVUvvVSL3Sx16y26thQSvBddqPLX1XdhZFcJB1iorblAJ6WoDFzu5xC9PUxe0yd_Ont8TsdTX1CKrR9hwGHICyYhEZTQHJcQJyxJICikizHEnBcRTWKeCyqFCAKeUxoSmbNAUqBDNOrvylYb00KZNa1ai3aTEZxt9WW9vmyvzxWu-0LT5WsoDviPLwfc9sAn5Lo0Tkwt4YBhZ5jTmBHmEokdzf9Pp8rufKW6q62r3vRV92G20l1bO1F_vf0NYi-c6w</recordid><startdate>20210804</startdate><enddate>20210804</enddate><creator>Wang, Kebing</creator><creator>Shang, Tengda</creator><creator>Zhang, Lu</creator><creator>Zhou, Lei</creator><creator>Liu, Changqi</creator><creator>Fu, Yudie</creator><creator>Zhao, Yuancong</creator><creator>Li, Xin</creator><creator>Wang, Jin</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8809-4907</orcidid><orcidid>https://orcid.org/0000-0003-3129-4120</orcidid><orcidid>https://orcid.org/0000-0003-4983-7584</orcidid><orcidid>https://orcid.org/0000-0002-5253-3883</orcidid></search><sort><creationdate>20210804</creationdate><title>Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents</title><author>Wang, Kebing ; Shang, Tengda ; Zhang, Lu ; Zhou, Lei ; Liu, Changqi ; Fu, Yudie ; Zhao, Yuancong ; Li, Xin ; Wang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-60e0558d4ce9a313b0fe79499e2dcfe77e788d63978ba3caa228b3351cb42c3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Catechin - administration & dosage</topic><topic>Catechin - analogs & derivatives</topic><topic>Catechin - chemistry</topic><topic>Catechin - pharmacology</topic><topic>Cell Movement - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Coronary Restenosis - prevention & control</topic><topic>Cystamine - administration & dosage</topic><topic>Cystamine - chemistry</topic><topic>Drug Liberation</topic><topic>Drug-Eluting Stents</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - drug effects</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>Male</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Nanoscience & Nanotechnology</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Quinolines - administration & dosage</topic><topic>Quinolines - chemistry</topic><topic>Quinolines - pharmacology</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - antagonists & inhibitors</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Stainless Steel - chemistry</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kebing</creatorcontrib><creatorcontrib>Shang, Tengda</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Liu, Changqi</creatorcontrib><creatorcontrib>Fu, Yudie</creatorcontrib><creatorcontrib>Zhao, Yuancong</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kebing</au><au>Shang, Tengda</au><au>Zhang, Lu</au><au>Zhou, Lei</au><au>Liu, Changqi</au><au>Fu, Yudie</au><au>Zhao, Yuancong</au><au>Li, Xin</au><au>Wang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents</atitle><jtitle>ACS applied materials & interfaces</jtitle><stitle>ACS APPL MATER INTER</stitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-08-04</date><risdate>2021</risdate><volume>13</volume><issue>30</issue><spage>35431</spage><epage>35443</epage><pages>35431-35443</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>34304556</pmid><doi>10.1021/acsami.1c08880</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8809-4907</orcidid><orcidid>https://orcid.org/0000-0003-3129-4120</orcidid><orcidid>https://orcid.org/0000-0003-4983-7584</orcidid><orcidid>https://orcid.org/0000-0002-5253-3883</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-08, Vol.13 (30), p.35431-35443 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_webofscience_primary_000683741400017 |
source | MEDLINE; ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Animals Biological and Medical Applications of Materials and Interfaces Catechin - administration & dosage Catechin - analogs & derivatives Catechin - chemistry Catechin - pharmacology Cell Movement - drug effects Cell Proliferation - drug effects Cells, Cultured Coated Materials, Biocompatible - chemistry Coated Materials, Biocompatible - pharmacology Coronary Restenosis - prevention & control Cystamine - administration & dosage Cystamine - chemistry Drug Liberation Drug-Eluting Stents Endothelial Cells - cytology Endothelial Cells - drug effects Macrophages - cytology Macrophages - drug effects Male Materials Science Materials Science, Multidisciplinary Myocytes, Smooth Muscle - drug effects Nanoscience & Nanotechnology Neovascularization, Physiologic - drug effects Oxidation-Reduction - drug effects Quinolines - administration & dosage Quinolines - chemistry Quinolines - pharmacology Rabbits Rats Rats, Sprague-Dawley Reactive Oxygen Species - antagonists & inhibitors Science & Technology Science & Technology - Other Topics Stainless Steel - chemistry Technology |
title | Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20Reactive%20Oxygen%20Species-Responsive%20Drug-Eluting%20Coating%20for%20Surface%20Modification%20of%20Vascular%20Stents&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Kebing&rft.date=2021-08-04&rft.volume=13&rft.issue=30&rft.spage=35431&rft.epage=35443&rft.pages=35431-35443&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c08880&rft_dat=%3Cacs_webof%3Eb320085519%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34304556&rfr_iscdi=true |