Inference of fuzzy reliability model for inverse Rayleigh distribution

In this paper, the question of inference of the reliability parameter of fuzzy stress strength R-F = P (Y < X) is attached to the difference between stress and strength values when X and Y are independently distributed from inverse Rayleigh random variables. Including fuzziness in the stress-stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2021-01, Vol.6 (9), p.9770-9785
Hauptverfasser: Sabry, Mohamed A. H., Almetwally, Ehab M., Alamri, Osama Abdulaziz, Yusuf, M., Almongy, Hisham M., Eldeeb, Ahmed Sedky
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9785
container_issue 9
container_start_page 9770
container_title AIMS Mathematics
container_volume 6
creator Sabry, Mohamed A. H.
Almetwally, Ehab M.
Alamri, Osama Abdulaziz
Yusuf, M.
Almongy, Hisham M.
Eldeeb, Ahmed Sedky
description In this paper, the question of inference of the reliability parameter of fuzzy stress strength R-F = P (Y < X) is attached to the difference between stress and strength values when X and Y are independently distributed from inverse Rayleigh random variables. Including fuzziness in the stress-strength interference enables researchers to make more sensitive and precise analyses about the underlying systems. The maximum product of the spacing method for the reliability of fuzzy stress intensity inference has been introduced. As classical estimation methods and Bayesian estimation methods are used to estimate the reliability parameter R-F , the maximum product of spacing and maximum likelihood estimation methods is used. The maximum product of spacing under fuzzy reliability of stress strength model is introducing in this paper. Markov Chain Monte Carlo approach is used to obtain Bayesian estimators of traditional and fuzzy reliability of stress strength for inverse Rayleigh model by using the Metropolis-Hastings algorithm. Using an extensive Monte Carlo simulation analysis, the outputs of the fuzzy reliability and traditional reliability estimators are contrasted. Finally, for example, and to verify the efficiency of the proposed estimators, a genuine data application is used.
doi_str_mv 10.3934/math.2021568
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000683418700016CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693158114</galeid><doaj_id>oai_doaj_org_article_b03f64d094d946f3a93ea9cbbf169af3</doaj_id><sourcerecordid>A693158114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a3c90c53bd3338cb4e075c0a279eea9c965c41273ecb071e5e7e01c2a3c0c21b3</originalsourceid><addsrcrecordid>eNqNkU9LAzEQxRdRUGpvfoC9a2uSyW42x1L8UygIouclyU5qZLuRbKq0n96sW8SjzGGG4fdewrwsu6JkDhL47VbFtzkjjBZldZJdMC5gVsqqOv0zn2fTvn8nJFGMM8EvsvtVZzFgZzD3Nre7w2GfB2yd0q51cZ9vfYNtbn3IXfeJocf8We1bdJu3vHF9DE7vovPdZXZmVdvj9Ngn2ev93cvycbZ-elgtF-uZAVHFmQIjiSlANwBQGc2RiMIQxYREVNLIsjCcMgFoNBEUCxRIqGFJRwyjGibZavRtvHqvP4LbqrCvvXL1z8KHTa1CdKbFWhOwJW-I5I3kpQUlYXhCa0tLqSwkr_notVEJd531MSiTqsGtM75D69J-UUqgRUUpT4KbUWCC7_uA9vcDlNRDBvWQQX3MIOHXI_6F2tveuOHKv5IUQmI4rUSaaJno6v_00kU1nH3pd12Eb6M0m20</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inference of fuzzy reliability model for inverse Rayleigh distribution</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Sabry, Mohamed A. H. ; Almetwally, Ehab M. ; Alamri, Osama Abdulaziz ; Yusuf, M. ; Almongy, Hisham M. ; Eldeeb, Ahmed Sedky</creator><creatorcontrib>Sabry, Mohamed A. H. ; Almetwally, Ehab M. ; Alamri, Osama Abdulaziz ; Yusuf, M. ; Almongy, Hisham M. ; Eldeeb, Ahmed Sedky ; Faculty of Commerce, Mansoura University, Mansoura 35516, Egypt ; Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt ; Department of Statistics, Mathematics and Insurance, Alexandria University, Egypt ; Faculty of Business Administration, Delta University for Science and Technology, Mansoura 11152, Egypt ; Statistics Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia ; Mathematics Department, Helwan University, Egypt ; Department of Business Administration, College of Business, King Khaled University, Saudi Arabia</creatorcontrib><description>In this paper, the question of inference of the reliability parameter of fuzzy stress strength R-F = P (Y &lt; X) is attached to the difference between stress and strength values when X and Y are independently distributed from inverse Rayleigh random variables. Including fuzziness in the stress-strength interference enables researchers to make more sensitive and precise analyses about the underlying systems. The maximum product of the spacing method for the reliability of fuzzy stress intensity inference has been introduced. As classical estimation methods and Bayesian estimation methods are used to estimate the reliability parameter R-F , the maximum product of spacing and maximum likelihood estimation methods is used. The maximum product of spacing under fuzzy reliability of stress strength model is introducing in this paper. Markov Chain Monte Carlo approach is used to obtain Bayesian estimators of traditional and fuzzy reliability of stress strength for inverse Rayleigh model by using the Metropolis-Hastings algorithm. Using an extensive Monte Carlo simulation analysis, the outputs of the fuzzy reliability and traditional reliability estimators are contrasted. Finally, for example, and to verify the efficiency of the proposed estimators, a genuine data application is used.</description><identifier>ISSN: 2473-6988</identifier><identifier>EISSN: 2473-6988</identifier><identifier>DOI: 10.3934/math.2021568</identifier><language>eng</language><publisher>SPRINGFIELD: Amer Inst Mathematical Sciences-Aims</publisher><subject>bayesian ; fuzzy set ; inverse rayleigh distribution ; Markov processes ; Mathematics ; Mathematics, Applied ; maximum likelihood ; maximum product of spacing ; Monte Carlo method ; Physical Sciences ; reliability stress-strength ; Science &amp; Technology</subject><ispartof>AIMS Mathematics, 2021-01, Vol.6 (9), p.9770-9785</ispartof><rights>COPYRIGHT 2021 AIMS Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>23</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000683418700016</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c378t-a3c90c53bd3338cb4e075c0a279eea9c965c41273ecb071e5e7e01c2a3c0c21b3</citedby><cites>FETCH-LOGICAL-c378t-a3c90c53bd3338cb4e075c0a279eea9c965c41273ecb071e5e7e01c2a3c0c21b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,2116,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Sabry, Mohamed A. H.</creatorcontrib><creatorcontrib>Almetwally, Ehab M.</creatorcontrib><creatorcontrib>Alamri, Osama Abdulaziz</creatorcontrib><creatorcontrib>Yusuf, M.</creatorcontrib><creatorcontrib>Almongy, Hisham M.</creatorcontrib><creatorcontrib>Eldeeb, Ahmed Sedky</creatorcontrib><creatorcontrib>Faculty of Commerce, Mansoura University, Mansoura 35516, Egypt</creatorcontrib><creatorcontrib>Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt</creatorcontrib><creatorcontrib>Department of Statistics, Mathematics and Insurance, Alexandria University, Egypt</creatorcontrib><creatorcontrib>Faculty of Business Administration, Delta University for Science and Technology, Mansoura 11152, Egypt</creatorcontrib><creatorcontrib>Statistics Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia</creatorcontrib><creatorcontrib>Mathematics Department, Helwan University, Egypt</creatorcontrib><creatorcontrib>Department of Business Administration, College of Business, King Khaled University, Saudi Arabia</creatorcontrib><title>Inference of fuzzy reliability model for inverse Rayleigh distribution</title><title>AIMS Mathematics</title><addtitle>AIMS MATH</addtitle><description>In this paper, the question of inference of the reliability parameter of fuzzy stress strength R-F = P (Y &lt; X) is attached to the difference between stress and strength values when X and Y are independently distributed from inverse Rayleigh random variables. Including fuzziness in the stress-strength interference enables researchers to make more sensitive and precise analyses about the underlying systems. The maximum product of the spacing method for the reliability of fuzzy stress intensity inference has been introduced. As classical estimation methods and Bayesian estimation methods are used to estimate the reliability parameter R-F , the maximum product of spacing and maximum likelihood estimation methods is used. The maximum product of spacing under fuzzy reliability of stress strength model is introducing in this paper. Markov Chain Monte Carlo approach is used to obtain Bayesian estimators of traditional and fuzzy reliability of stress strength for inverse Rayleigh model by using the Metropolis-Hastings algorithm. Using an extensive Monte Carlo simulation analysis, the outputs of the fuzzy reliability and traditional reliability estimators are contrasted. Finally, for example, and to verify the efficiency of the proposed estimators, a genuine data application is used.</description><subject>bayesian</subject><subject>fuzzy set</subject><subject>inverse rayleigh distribution</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>maximum likelihood</subject><subject>maximum product of spacing</subject><subject>Monte Carlo method</subject><subject>Physical Sciences</subject><subject>reliability stress-strength</subject><subject>Science &amp; Technology</subject><issn>2473-6988</issn><issn>2473-6988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9LAzEQxRdRUGpvfoC9a2uSyW42x1L8UygIouclyU5qZLuRbKq0n96sW8SjzGGG4fdewrwsu6JkDhL47VbFtzkjjBZldZJdMC5gVsqqOv0zn2fTvn8nJFGMM8EvsvtVZzFgZzD3Nre7w2GfB2yd0q51cZ9vfYNtbn3IXfeJocf8We1bdJu3vHF9DE7vovPdZXZmVdvj9Ngn2ev93cvycbZ-elgtF-uZAVHFmQIjiSlANwBQGc2RiMIQxYREVNLIsjCcMgFoNBEUCxRIqGFJRwyjGibZavRtvHqvP4LbqrCvvXL1z8KHTa1CdKbFWhOwJW-I5I3kpQUlYXhCa0tLqSwkr_notVEJd531MSiTqsGtM75D69J-UUqgRUUpT4KbUWCC7_uA9vcDlNRDBvWQQX3MIOHXI_6F2tveuOHKv5IUQmI4rUSaaJno6v_00kU1nH3pd12Eb6M0m20</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Sabry, Mohamed A. H.</creator><creator>Almetwally, Ehab M.</creator><creator>Alamri, Osama Abdulaziz</creator><creator>Yusuf, M.</creator><creator>Almongy, Hisham M.</creator><creator>Eldeeb, Ahmed Sedky</creator><general>Amer Inst Mathematical Sciences-Aims</general><general>AIMS Press</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>Inference of fuzzy reliability model for inverse Rayleigh distribution</title><author>Sabry, Mohamed A. H. ; Almetwally, Ehab M. ; Alamri, Osama Abdulaziz ; Yusuf, M. ; Almongy, Hisham M. ; Eldeeb, Ahmed Sedky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a3c90c53bd3338cb4e075c0a279eea9c965c41273ecb071e5e7e01c2a3c0c21b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bayesian</topic><topic>fuzzy set</topic><topic>inverse rayleigh distribution</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>maximum likelihood</topic><topic>maximum product of spacing</topic><topic>Monte Carlo method</topic><topic>Physical Sciences</topic><topic>reliability stress-strength</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabry, Mohamed A. H.</creatorcontrib><creatorcontrib>Almetwally, Ehab M.</creatorcontrib><creatorcontrib>Alamri, Osama Abdulaziz</creatorcontrib><creatorcontrib>Yusuf, M.</creatorcontrib><creatorcontrib>Almongy, Hisham M.</creatorcontrib><creatorcontrib>Eldeeb, Ahmed Sedky</creatorcontrib><creatorcontrib>Faculty of Commerce, Mansoura University, Mansoura 35516, Egypt</creatorcontrib><creatorcontrib>Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt</creatorcontrib><creatorcontrib>Department of Statistics, Mathematics and Insurance, Alexandria University, Egypt</creatorcontrib><creatorcontrib>Faculty of Business Administration, Delta University for Science and Technology, Mansoura 11152, Egypt</creatorcontrib><creatorcontrib>Statistics Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia</creatorcontrib><creatorcontrib>Mathematics Department, Helwan University, Egypt</creatorcontrib><creatorcontrib>Department of Business Administration, College of Business, King Khaled University, Saudi Arabia</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIMS Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabry, Mohamed A. H.</au><au>Almetwally, Ehab M.</au><au>Alamri, Osama Abdulaziz</au><au>Yusuf, M.</au><au>Almongy, Hisham M.</au><au>Eldeeb, Ahmed Sedky</au><aucorp>Faculty of Commerce, Mansoura University, Mansoura 35516, Egypt</aucorp><aucorp>Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt</aucorp><aucorp>Department of Statistics, Mathematics and Insurance, Alexandria University, Egypt</aucorp><aucorp>Faculty of Business Administration, Delta University for Science and Technology, Mansoura 11152, Egypt</aucorp><aucorp>Statistics Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia</aucorp><aucorp>Mathematics Department, Helwan University, Egypt</aucorp><aucorp>Department of Business Administration, College of Business, King Khaled University, Saudi Arabia</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference of fuzzy reliability model for inverse Rayleigh distribution</atitle><jtitle>AIMS Mathematics</jtitle><stitle>AIMS MATH</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>6</volume><issue>9</issue><spage>9770</spage><epage>9785</epage><pages>9770-9785</pages><issn>2473-6988</issn><eissn>2473-6988</eissn><abstract>In this paper, the question of inference of the reliability parameter of fuzzy stress strength R-F = P (Y &lt; X) is attached to the difference between stress and strength values when X and Y are independently distributed from inverse Rayleigh random variables. Including fuzziness in the stress-strength interference enables researchers to make more sensitive and precise analyses about the underlying systems. The maximum product of the spacing method for the reliability of fuzzy stress intensity inference has been introduced. As classical estimation methods and Bayesian estimation methods are used to estimate the reliability parameter R-F , the maximum product of spacing and maximum likelihood estimation methods is used. The maximum product of spacing under fuzzy reliability of stress strength model is introducing in this paper. Markov Chain Monte Carlo approach is used to obtain Bayesian estimators of traditional and fuzzy reliability of stress strength for inverse Rayleigh model by using the Metropolis-Hastings algorithm. Using an extensive Monte Carlo simulation analysis, the outputs of the fuzzy reliability and traditional reliability estimators are contrasted. Finally, for example, and to verify the efficiency of the proposed estimators, a genuine data application is used.</abstract><cop>SPRINGFIELD</cop><pub>Amer Inst Mathematical Sciences-Aims</pub><doi>10.3934/math.2021568</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2473-6988
ispartof AIMS Mathematics, 2021-01, Vol.6 (9), p.9770-9785
issn 2473-6988
2473-6988
language eng
recordid cdi_webofscience_primary_000683418700016CitationCount
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects bayesian
fuzzy set
inverse rayleigh distribution
Markov processes
Mathematics
Mathematics, Applied
maximum likelihood
maximum product of spacing
Monte Carlo method
Physical Sciences
reliability stress-strength
Science & Technology
title Inference of fuzzy reliability model for inverse Rayleigh distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20of%20fuzzy%20reliability%20model%20for%20inverse%20Rayleigh%20distribution&rft.jtitle=AIMS%20Mathematics&rft.au=Sabry,%20Mohamed%20A.%20H.&rft.aucorp=Faculty%20of%20Commerce,%20Mansoura%20University,%20Mansoura%2035516,%20Egypt&rft.date=2021-01-01&rft.volume=6&rft.issue=9&rft.spage=9770&rft.epage=9785&rft.pages=9770-9785&rft.issn=2473-6988&rft.eissn=2473-6988&rft_id=info:doi/10.3934/math.2021568&rft_dat=%3Cgale_webof%3EA693158114%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A693158114&rft_doaj_id=oai_doaj_org_article_b03f64d094d946f3a93ea9cbbf169af3&rfr_iscdi=true