Physically cross-linked chitosan/dextrin cryogels entrapping Thymus vulgaris essential oil with enhanced mechanical, antioxidant and antifungal properties

Herein, we entrapped Thymus vulgaris essential oil (EO) within the physically cross-linked sponge-like architecture of cryogels by ice template-assisted freeze-drying. Their 3D cryogenically-structured network was built through hydrogen bonding formed by blending two naturally-derived polysaccharide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2021-08, Vol.184, p.898-908
Hauptverfasser: Dinu, Maria Valentina, Gradinaru, Adina Catinca, Lazar, Maria Marinela, Dinu, Ionel Adrian, Raschip, Irina Elena, Ciocarlan, Nina, Aprotosoaie, Ana Clara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we entrapped Thymus vulgaris essential oil (EO) within the physically cross-linked sponge-like architecture of cryogels by ice template-assisted freeze-drying. Their 3D cryogenically-structured network was built through hydrogen bonding formed by blending two naturally-derived polysaccharides, chitosan and dextrin. The embedment of EOs within the cryogel matrix generates porous films with an increased elasticity that allows their fast shape recovery after full compression. Thus, the swollen EOs-loaded cryogel films exhibited an elastic modulus of 3.00 MPa, which is more than 40 times higher than that of polysaccharide films without EOs (an elastic modulus of only 0.07 MPa). In addition, the encapsulation of bioactive compounds endows the bio-based films with both antioxidant and antifungal properties, showing a radical scavenging activity of 65% and a zone inhibition diameter of 40 mm for Candida parapsilosis fungi. Our results recommend the entrapment of EOs into bio-based cryogel carriers as a straightforward approach to provide ‘green’ polysaccharide-based films having both improved physicochemical properties and remarkable antifungal activity.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2021.06.068