Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma
Background: Laguna-ONhE is an application for the colorimetric analysis of optic nerve images, which topographically assesses the cup and the presence of haemoglobin. Its latest version has been fully automated with five deep learning models. In this paper, perimetry in combination with Laguna-ONhE...
Gespeichert in:
Veröffentlicht in: | Journal of clinical medicine 2021-07, Vol.10 (15), p.3231 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 3231 |
container_title | Journal of clinical medicine |
container_volume | 10 |
creator | Gonzalez-Hernandez, Marta Gonzalez-Hernandez, Daniel Perez-Barbudo, Daniel Rodriguez-Esteve, Paloma Betancor-Caro, Nisamar Gonzalez de la Rosa, Manuel |
description | Background: Laguna-ONhE is an application for the colorimetric analysis of optic nerve images, which topographically assesses the cup and the presence of haemoglobin. Its latest version has been fully automated with five deep learning models. In this paper, perimetry in combination with Laguna-ONhE or Cirrus-OCT was evaluated. Methods: The morphology and perfusion estimated by Laguna ONhE were compiled into a “Globin Distribution Function” (GDF). Visual field irregularity was measured with the usual pattern standard deviation (PSD) and the threshold coefficient of variation (TCV), which analyses its harmony without taking into account age-corrected values. In total, 477 normal eyes, 235 confirmed, and 98 suspected glaucoma cases were examined with Cirrus-OCT and different fundus cameras and perimeters. Results: The best Receiver Operating Characteristic (ROC) analysis results for confirmed and suspected glaucoma were obtained with the combination of GDF and TCV (AUC: 0.995 and 0.935, respectively. Sensitivities: 94.5% and 45.9%, respectively, for 99% specificity). The best combination of OCT and perimetry was obtained with the vertical cup/disc ratio and PSD (AUC: 0.988 and 0.847, respectively. Sensitivities: 84.7% and 18.4%, respectively, for 99% specificity). Conclusion: Using Laguna ONhE, morphology, perfusion, and function can be mutually enhanced with the methods described for the purpose of glaucoma assessment, providing early sensitivity. |
doi_str_mv | 10.3390/jcm10153231 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559437769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-25ad9ee1e3ffa4c24baa72c0ae585348db57bfbbc9504e5a402ed73aab8bfa133</originalsourceid><addsrcrecordid>eNpdkd9qFDEUhwdRbKm98gUC3giymr-bzI0wrLYWFlewXg9nMme6WTKTNclU5j18YGd3S6nNzQk5H9_5kVMUbxn9KERJP-1szyhTggv2ojjnVOsFFUa8fHI_Ky5T2tH5GCM506-LMyHFklMmz4u_V6P3E6nGHHrI2JJV8CG6HnN0llQD-Cm5REJH8hbJZp_n1-8Y75FUrp3xZiJfEPdkjRAHN9wRGFpykxOpUgrWQXZhIH9c3pIfeNJOR2SzuiVdiEfrzzy202HEtYfRzjneFK868AkvH-pF8evq6-3q22K9ub5ZVeuFFWaZF1xBWyIyFF0H0nLZAGhuKaAySkjTNko3XdPYUlGJCiTl2GoB0JimAybERfH55N2PTY-txSFH8PV-DgpxqgO4-v_O4Lb1XbivjZBalgfB-wdBDL9HTLnuXbLoPQwYxlRzpUoptF6WM_ruGboLY5z_90gZI5bqmOjDibIxpBSxewzDaH1YeP1k4eIfYYie2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558836513</pqid></control><display><type>article</type><title>Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gonzalez-Hernandez, Marta ; Gonzalez-Hernandez, Daniel ; Perez-Barbudo, Daniel ; Rodriguez-Esteve, Paloma ; Betancor-Caro, Nisamar ; Gonzalez de la Rosa, Manuel</creator><creatorcontrib>Gonzalez-Hernandez, Marta ; Gonzalez-Hernandez, Daniel ; Perez-Barbudo, Daniel ; Rodriguez-Esteve, Paloma ; Betancor-Caro, Nisamar ; Gonzalez de la Rosa, Manuel</creatorcontrib><description>Background: Laguna-ONhE is an application for the colorimetric analysis of optic nerve images, which topographically assesses the cup and the presence of haemoglobin. Its latest version has been fully automated with five deep learning models. In this paper, perimetry in combination with Laguna-ONhE or Cirrus-OCT was evaluated. Methods: The morphology and perfusion estimated by Laguna ONhE were compiled into a “Globin Distribution Function” (GDF). Visual field irregularity was measured with the usual pattern standard deviation (PSD) and the threshold coefficient of variation (TCV), which analyses its harmony without taking into account age-corrected values. In total, 477 normal eyes, 235 confirmed, and 98 suspected glaucoma cases were examined with Cirrus-OCT and different fundus cameras and perimeters. Results: The best Receiver Operating Characteristic (ROC) analysis results for confirmed and suspected glaucoma were obtained with the combination of GDF and TCV (AUC: 0.995 and 0.935, respectively. Sensitivities: 94.5% and 45.9%, respectively, for 99% specificity). The best combination of OCT and perimetry was obtained with the vertical cup/disc ratio and PSD (AUC: 0.988 and 0.847, respectively. Sensitivities: 84.7% and 18.4%, respectively, for 99% specificity). Conclusion: Using Laguna ONhE, morphology, perfusion, and function can be mutually enhanced with the methods described for the purpose of glaucoma assessment, providing early sensitivity.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm10153231</identifier><identifier>PMID: 34362014</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Automation ; Clinical medicine ; Deep learning ; Disease ; Expected values ; Glaucoma ; Hemoglobin ; Morphology ; Optic nerve ; Optics ; Reproducibility ; Standard deviation</subject><ispartof>Journal of clinical medicine, 2021-07, Vol.10 (15), p.3231</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-25ad9ee1e3ffa4c24baa72c0ae585348db57bfbbc9504e5a402ed73aab8bfa133</citedby><cites>FETCH-LOGICAL-c386t-25ad9ee1e3ffa4c24baa72c0ae585348db57bfbbc9504e5a402ed73aab8bfa133</cites><orcidid>0000-0002-9569-2358 ; 0000-0003-2242-3285 ; 0000-0001-7397-7160 ; 0000-0003-0749-5774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347493/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347493/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Gonzalez-Hernandez, Marta</creatorcontrib><creatorcontrib>Gonzalez-Hernandez, Daniel</creatorcontrib><creatorcontrib>Perez-Barbudo, Daniel</creatorcontrib><creatorcontrib>Rodriguez-Esteve, Paloma</creatorcontrib><creatorcontrib>Betancor-Caro, Nisamar</creatorcontrib><creatorcontrib>Gonzalez de la Rosa, Manuel</creatorcontrib><title>Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma</title><title>Journal of clinical medicine</title><description>Background: Laguna-ONhE is an application for the colorimetric analysis of optic nerve images, which topographically assesses the cup and the presence of haemoglobin. Its latest version has been fully automated with five deep learning models. In this paper, perimetry in combination with Laguna-ONhE or Cirrus-OCT was evaluated. Methods: The morphology and perfusion estimated by Laguna ONhE were compiled into a “Globin Distribution Function” (GDF). Visual field irregularity was measured with the usual pattern standard deviation (PSD) and the threshold coefficient of variation (TCV), which analyses its harmony without taking into account age-corrected values. In total, 477 normal eyes, 235 confirmed, and 98 suspected glaucoma cases were examined with Cirrus-OCT and different fundus cameras and perimeters. Results: The best Receiver Operating Characteristic (ROC) analysis results for confirmed and suspected glaucoma were obtained with the combination of GDF and TCV (AUC: 0.995 and 0.935, respectively. Sensitivities: 94.5% and 45.9%, respectively, for 99% specificity). The best combination of OCT and perimetry was obtained with the vertical cup/disc ratio and PSD (AUC: 0.988 and 0.847, respectively. Sensitivities: 84.7% and 18.4%, respectively, for 99% specificity). Conclusion: Using Laguna ONhE, morphology, perfusion, and function can be mutually enhanced with the methods described for the purpose of glaucoma assessment, providing early sensitivity.</description><subject>Automation</subject><subject>Clinical medicine</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Expected values</subject><subject>Glaucoma</subject><subject>Hemoglobin</subject><subject>Morphology</subject><subject>Optic nerve</subject><subject>Optics</subject><subject>Reproducibility</subject><subject>Standard deviation</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9qFDEUhwdRbKm98gUC3giymr-bzI0wrLYWFlewXg9nMme6WTKTNclU5j18YGd3S6nNzQk5H9_5kVMUbxn9KERJP-1szyhTggv2ojjnVOsFFUa8fHI_Ky5T2tH5GCM506-LMyHFklMmz4u_V6P3E6nGHHrI2JJV8CG6HnN0llQD-Cm5REJH8hbJZp_n1-8Y75FUrp3xZiJfEPdkjRAHN9wRGFpykxOpUgrWQXZhIH9c3pIfeNJOR2SzuiVdiEfrzzy202HEtYfRzjneFK868AkvH-pF8evq6-3q22K9ub5ZVeuFFWaZF1xBWyIyFF0H0nLZAGhuKaAySkjTNko3XdPYUlGJCiTl2GoB0JimAybERfH55N2PTY-txSFH8PV-DgpxqgO4-v_O4Lb1XbivjZBalgfB-wdBDL9HTLnuXbLoPQwYxlRzpUoptF6WM_ruGboLY5z_90gZI5bqmOjDibIxpBSxewzDaH1YeP1k4eIfYYie2g</recordid><startdate>20210722</startdate><enddate>20210722</enddate><creator>Gonzalez-Hernandez, Marta</creator><creator>Gonzalez-Hernandez, Daniel</creator><creator>Perez-Barbudo, Daniel</creator><creator>Rodriguez-Esteve, Paloma</creator><creator>Betancor-Caro, Nisamar</creator><creator>Gonzalez de la Rosa, Manuel</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9569-2358</orcidid><orcidid>https://orcid.org/0000-0003-2242-3285</orcidid><orcidid>https://orcid.org/0000-0001-7397-7160</orcidid><orcidid>https://orcid.org/0000-0003-0749-5774</orcidid></search><sort><creationdate>20210722</creationdate><title>Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma</title><author>Gonzalez-Hernandez, Marta ; Gonzalez-Hernandez, Daniel ; Perez-Barbudo, Daniel ; Rodriguez-Esteve, Paloma ; Betancor-Caro, Nisamar ; Gonzalez de la Rosa, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-25ad9ee1e3ffa4c24baa72c0ae585348db57bfbbc9504e5a402ed73aab8bfa133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automation</topic><topic>Clinical medicine</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Expected values</topic><topic>Glaucoma</topic><topic>Hemoglobin</topic><topic>Morphology</topic><topic>Optic nerve</topic><topic>Optics</topic><topic>Reproducibility</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez-Hernandez, Marta</creatorcontrib><creatorcontrib>Gonzalez-Hernandez, Daniel</creatorcontrib><creatorcontrib>Perez-Barbudo, Daniel</creatorcontrib><creatorcontrib>Rodriguez-Esteve, Paloma</creatorcontrib><creatorcontrib>Betancor-Caro, Nisamar</creatorcontrib><creatorcontrib>Gonzalez de la Rosa, Manuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez-Hernandez, Marta</au><au>Gonzalez-Hernandez, Daniel</au><au>Perez-Barbudo, Daniel</au><au>Rodriguez-Esteve, Paloma</au><au>Betancor-Caro, Nisamar</au><au>Gonzalez de la Rosa, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma</atitle><jtitle>Journal of clinical medicine</jtitle><date>2021-07-22</date><risdate>2021</risdate><volume>10</volume><issue>15</issue><spage>3231</spage><pages>3231-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Background: Laguna-ONhE is an application for the colorimetric analysis of optic nerve images, which topographically assesses the cup and the presence of haemoglobin. Its latest version has been fully automated with five deep learning models. In this paper, perimetry in combination with Laguna-ONhE or Cirrus-OCT was evaluated. Methods: The morphology and perfusion estimated by Laguna ONhE were compiled into a “Globin Distribution Function” (GDF). Visual field irregularity was measured with the usual pattern standard deviation (PSD) and the threshold coefficient of variation (TCV), which analyses its harmony without taking into account age-corrected values. In total, 477 normal eyes, 235 confirmed, and 98 suspected glaucoma cases were examined with Cirrus-OCT and different fundus cameras and perimeters. Results: The best Receiver Operating Characteristic (ROC) analysis results for confirmed and suspected glaucoma were obtained with the combination of GDF and TCV (AUC: 0.995 and 0.935, respectively. Sensitivities: 94.5% and 45.9%, respectively, for 99% specificity). The best combination of OCT and perimetry was obtained with the vertical cup/disc ratio and PSD (AUC: 0.988 and 0.847, respectively. Sensitivities: 84.7% and 18.4%, respectively, for 99% specificity). Conclusion: Using Laguna ONhE, morphology, perfusion, and function can be mutually enhanced with the methods described for the purpose of glaucoma assessment, providing early sensitivity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34362014</pmid><doi>10.3390/jcm10153231</doi><orcidid>https://orcid.org/0000-0002-9569-2358</orcidid><orcidid>https://orcid.org/0000-0003-2242-3285</orcidid><orcidid>https://orcid.org/0000-0001-7397-7160</orcidid><orcidid>https://orcid.org/0000-0003-0749-5774</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0383 |
ispartof | Journal of clinical medicine, 2021-07, Vol.10 (15), p.3231 |
issn | 2077-0383 2077-0383 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347493 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Automation Clinical medicine Deep learning Disease Expected values Glaucoma Hemoglobin Morphology Optic nerve Optics Reproducibility Standard deviation |
title | Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automated%20Colorimetric%20Analysis%20of%20the%20Optic%20Nerve%20Aided%20by%20Deep%20Learning%20and%20Its%20Association%20with%20Perimetry%20and%20OCT%20for%20the%20Study%20of%20Glaucoma&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Gonzalez-Hernandez,%20Marta&rft.date=2021-07-22&rft.volume=10&rft.issue=15&rft.spage=3231&rft.pages=3231-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm10153231&rft_dat=%3Cproquest_pubme%3E2559437769%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558836513&rft_id=info:pmid/34362014&rfr_iscdi=true |