Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma

Background: Laguna-ONhE is an application for the colorimetric analysis of optic nerve images, which topographically assesses the cup and the presence of haemoglobin. Its latest version has been fully automated with five deep learning models. In this paper, perimetry in combination with Laguna-ONhE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2021-07, Vol.10 (15), p.3231
Hauptverfasser: Gonzalez-Hernandez, Marta, Gonzalez-Hernandez, Daniel, Perez-Barbudo, Daniel, Rodriguez-Esteve, Paloma, Betancor-Caro, Nisamar, Gonzalez de la Rosa, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 3231
container_title Journal of clinical medicine
container_volume 10
creator Gonzalez-Hernandez, Marta
Gonzalez-Hernandez, Daniel
Perez-Barbudo, Daniel
Rodriguez-Esteve, Paloma
Betancor-Caro, Nisamar
Gonzalez de la Rosa, Manuel
description Background: Laguna-ONhE is an application for the colorimetric analysis of optic nerve images, which topographically assesses the cup and the presence of haemoglobin. Its latest version has been fully automated with five deep learning models. In this paper, perimetry in combination with Laguna-ONhE or Cirrus-OCT was evaluated. Methods: The morphology and perfusion estimated by Laguna ONhE were compiled into a “Globin Distribution Function” (GDF). Visual field irregularity was measured with the usual pattern standard deviation (PSD) and the threshold coefficient of variation (TCV), which analyses its harmony without taking into account age-corrected values. In total, 477 normal eyes, 235 confirmed, and 98 suspected glaucoma cases were examined with Cirrus-OCT and different fundus cameras and perimeters. Results: The best Receiver Operating Characteristic (ROC) analysis results for confirmed and suspected glaucoma were obtained with the combination of GDF and TCV (AUC: 0.995 and 0.935, respectively. Sensitivities: 94.5% and 45.9%, respectively, for 99% specificity). The best combination of OCT and perimetry was obtained with the vertical cup/disc ratio and PSD (AUC: 0.988 and 0.847, respectively. Sensitivities: 84.7% and 18.4%, respectively, for 99% specificity). Conclusion: Using Laguna ONhE, morphology, perfusion, and function can be mutually enhanced with the methods described for the purpose of glaucoma assessment, providing early sensitivity.
doi_str_mv 10.3390/jcm10153231
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559437769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-25ad9ee1e3ffa4c24baa72c0ae585348db57bfbbc9504e5a402ed73aab8bfa133</originalsourceid><addsrcrecordid>eNpdkd9qFDEUhwdRbKm98gUC3giymr-bzI0wrLYWFlewXg9nMme6WTKTNclU5j18YGd3S6nNzQk5H9_5kVMUbxn9KERJP-1szyhTggv2ojjnVOsFFUa8fHI_Ky5T2tH5GCM506-LMyHFklMmz4u_V6P3E6nGHHrI2JJV8CG6HnN0llQD-Cm5REJH8hbJZp_n1-8Y75FUrp3xZiJfEPdkjRAHN9wRGFpykxOpUgrWQXZhIH9c3pIfeNJOR2SzuiVdiEfrzzy202HEtYfRzjneFK868AkvH-pF8evq6-3q22K9ub5ZVeuFFWaZF1xBWyIyFF0H0nLZAGhuKaAySkjTNko3XdPYUlGJCiTl2GoB0JimAybERfH55N2PTY-txSFH8PV-DgpxqgO4-v_O4Lb1XbivjZBalgfB-wdBDL9HTLnuXbLoPQwYxlRzpUoptF6WM_ruGboLY5z_90gZI5bqmOjDibIxpBSxewzDaH1YeP1k4eIfYYie2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558836513</pqid></control><display><type>article</type><title>Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gonzalez-Hernandez, Marta ; Gonzalez-Hernandez, Daniel ; Perez-Barbudo, Daniel ; Rodriguez-Esteve, Paloma ; Betancor-Caro, Nisamar ; Gonzalez de la Rosa, Manuel</creator><creatorcontrib>Gonzalez-Hernandez, Marta ; Gonzalez-Hernandez, Daniel ; Perez-Barbudo, Daniel ; Rodriguez-Esteve, Paloma ; Betancor-Caro, Nisamar ; Gonzalez de la Rosa, Manuel</creatorcontrib><description>Background: Laguna-ONhE is an application for the colorimetric analysis of optic nerve images, which topographically assesses the cup and the presence of haemoglobin. Its latest version has been fully automated with five deep learning models. In this paper, perimetry in combination with Laguna-ONhE or Cirrus-OCT was evaluated. Methods: The morphology and perfusion estimated by Laguna ONhE were compiled into a “Globin Distribution Function” (GDF). Visual field irregularity was measured with the usual pattern standard deviation (PSD) and the threshold coefficient of variation (TCV), which analyses its harmony without taking into account age-corrected values. In total, 477 normal eyes, 235 confirmed, and 98 suspected glaucoma cases were examined with Cirrus-OCT and different fundus cameras and perimeters. Results: The best Receiver Operating Characteristic (ROC) analysis results for confirmed and suspected glaucoma were obtained with the combination of GDF and TCV (AUC: 0.995 and 0.935, respectively. Sensitivities: 94.5% and 45.9%, respectively, for 99% specificity). The best combination of OCT and perimetry was obtained with the vertical cup/disc ratio and PSD (AUC: 0.988 and 0.847, respectively. Sensitivities: 84.7% and 18.4%, respectively, for 99% specificity). Conclusion: Using Laguna ONhE, morphology, perfusion, and function can be mutually enhanced with the methods described for the purpose of glaucoma assessment, providing early sensitivity.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm10153231</identifier><identifier>PMID: 34362014</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Automation ; Clinical medicine ; Deep learning ; Disease ; Expected values ; Glaucoma ; Hemoglobin ; Morphology ; Optic nerve ; Optics ; Reproducibility ; Standard deviation</subject><ispartof>Journal of clinical medicine, 2021-07, Vol.10 (15), p.3231</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-25ad9ee1e3ffa4c24baa72c0ae585348db57bfbbc9504e5a402ed73aab8bfa133</citedby><cites>FETCH-LOGICAL-c386t-25ad9ee1e3ffa4c24baa72c0ae585348db57bfbbc9504e5a402ed73aab8bfa133</cites><orcidid>0000-0002-9569-2358 ; 0000-0003-2242-3285 ; 0000-0001-7397-7160 ; 0000-0003-0749-5774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347493/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347493/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Gonzalez-Hernandez, Marta</creatorcontrib><creatorcontrib>Gonzalez-Hernandez, Daniel</creatorcontrib><creatorcontrib>Perez-Barbudo, Daniel</creatorcontrib><creatorcontrib>Rodriguez-Esteve, Paloma</creatorcontrib><creatorcontrib>Betancor-Caro, Nisamar</creatorcontrib><creatorcontrib>Gonzalez de la Rosa, Manuel</creatorcontrib><title>Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma</title><title>Journal of clinical medicine</title><description>Background: Laguna-ONhE is an application for the colorimetric analysis of optic nerve images, which topographically assesses the cup and the presence of haemoglobin. Its latest version has been fully automated with five deep learning models. In this paper, perimetry in combination with Laguna-ONhE or Cirrus-OCT was evaluated. Methods: The morphology and perfusion estimated by Laguna ONhE were compiled into a “Globin Distribution Function” (GDF). Visual field irregularity was measured with the usual pattern standard deviation (PSD) and the threshold coefficient of variation (TCV), which analyses its harmony without taking into account age-corrected values. In total, 477 normal eyes, 235 confirmed, and 98 suspected glaucoma cases were examined with Cirrus-OCT and different fundus cameras and perimeters. Results: The best Receiver Operating Characteristic (ROC) analysis results for confirmed and suspected glaucoma were obtained with the combination of GDF and TCV (AUC: 0.995 and 0.935, respectively. Sensitivities: 94.5% and 45.9%, respectively, for 99% specificity). The best combination of OCT and perimetry was obtained with the vertical cup/disc ratio and PSD (AUC: 0.988 and 0.847, respectively. Sensitivities: 84.7% and 18.4%, respectively, for 99% specificity). Conclusion: Using Laguna ONhE, morphology, perfusion, and function can be mutually enhanced with the methods described for the purpose of glaucoma assessment, providing early sensitivity.</description><subject>Automation</subject><subject>Clinical medicine</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Expected values</subject><subject>Glaucoma</subject><subject>Hemoglobin</subject><subject>Morphology</subject><subject>Optic nerve</subject><subject>Optics</subject><subject>Reproducibility</subject><subject>Standard deviation</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9qFDEUhwdRbKm98gUC3giymr-bzI0wrLYWFlewXg9nMme6WTKTNclU5j18YGd3S6nNzQk5H9_5kVMUbxn9KERJP-1szyhTggv2ojjnVOsFFUa8fHI_Ky5T2tH5GCM506-LMyHFklMmz4u_V6P3E6nGHHrI2JJV8CG6HnN0llQD-Cm5REJH8hbJZp_n1-8Y75FUrp3xZiJfEPdkjRAHN9wRGFpykxOpUgrWQXZhIH9c3pIfeNJOR2SzuiVdiEfrzzy202HEtYfRzjneFK868AkvH-pF8evq6-3q22K9ub5ZVeuFFWaZF1xBWyIyFF0H0nLZAGhuKaAySkjTNko3XdPYUlGJCiTl2GoB0JimAybERfH55N2PTY-txSFH8PV-DgpxqgO4-v_O4Lb1XbivjZBalgfB-wdBDL9HTLnuXbLoPQwYxlRzpUoptF6WM_ruGboLY5z_90gZI5bqmOjDibIxpBSxewzDaH1YeP1k4eIfYYie2g</recordid><startdate>20210722</startdate><enddate>20210722</enddate><creator>Gonzalez-Hernandez, Marta</creator><creator>Gonzalez-Hernandez, Daniel</creator><creator>Perez-Barbudo, Daniel</creator><creator>Rodriguez-Esteve, Paloma</creator><creator>Betancor-Caro, Nisamar</creator><creator>Gonzalez de la Rosa, Manuel</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9569-2358</orcidid><orcidid>https://orcid.org/0000-0003-2242-3285</orcidid><orcidid>https://orcid.org/0000-0001-7397-7160</orcidid><orcidid>https://orcid.org/0000-0003-0749-5774</orcidid></search><sort><creationdate>20210722</creationdate><title>Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma</title><author>Gonzalez-Hernandez, Marta ; Gonzalez-Hernandez, Daniel ; Perez-Barbudo, Daniel ; Rodriguez-Esteve, Paloma ; Betancor-Caro, Nisamar ; Gonzalez de la Rosa, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-25ad9ee1e3ffa4c24baa72c0ae585348db57bfbbc9504e5a402ed73aab8bfa133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automation</topic><topic>Clinical medicine</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Expected values</topic><topic>Glaucoma</topic><topic>Hemoglobin</topic><topic>Morphology</topic><topic>Optic nerve</topic><topic>Optics</topic><topic>Reproducibility</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez-Hernandez, Marta</creatorcontrib><creatorcontrib>Gonzalez-Hernandez, Daniel</creatorcontrib><creatorcontrib>Perez-Barbudo, Daniel</creatorcontrib><creatorcontrib>Rodriguez-Esteve, Paloma</creatorcontrib><creatorcontrib>Betancor-Caro, Nisamar</creatorcontrib><creatorcontrib>Gonzalez de la Rosa, Manuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez-Hernandez, Marta</au><au>Gonzalez-Hernandez, Daniel</au><au>Perez-Barbudo, Daniel</au><au>Rodriguez-Esteve, Paloma</au><au>Betancor-Caro, Nisamar</au><au>Gonzalez de la Rosa, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma</atitle><jtitle>Journal of clinical medicine</jtitle><date>2021-07-22</date><risdate>2021</risdate><volume>10</volume><issue>15</issue><spage>3231</spage><pages>3231-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Background: Laguna-ONhE is an application for the colorimetric analysis of optic nerve images, which topographically assesses the cup and the presence of haemoglobin. Its latest version has been fully automated with five deep learning models. In this paper, perimetry in combination with Laguna-ONhE or Cirrus-OCT was evaluated. Methods: The morphology and perfusion estimated by Laguna ONhE were compiled into a “Globin Distribution Function” (GDF). Visual field irregularity was measured with the usual pattern standard deviation (PSD) and the threshold coefficient of variation (TCV), which analyses its harmony without taking into account age-corrected values. In total, 477 normal eyes, 235 confirmed, and 98 suspected glaucoma cases were examined with Cirrus-OCT and different fundus cameras and perimeters. Results: The best Receiver Operating Characteristic (ROC) analysis results for confirmed and suspected glaucoma were obtained with the combination of GDF and TCV (AUC: 0.995 and 0.935, respectively. Sensitivities: 94.5% and 45.9%, respectively, for 99% specificity). The best combination of OCT and perimetry was obtained with the vertical cup/disc ratio and PSD (AUC: 0.988 and 0.847, respectively. Sensitivities: 84.7% and 18.4%, respectively, for 99% specificity). Conclusion: Using Laguna ONhE, morphology, perfusion, and function can be mutually enhanced with the methods described for the purpose of glaucoma assessment, providing early sensitivity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34362014</pmid><doi>10.3390/jcm10153231</doi><orcidid>https://orcid.org/0000-0002-9569-2358</orcidid><orcidid>https://orcid.org/0000-0003-2242-3285</orcidid><orcidid>https://orcid.org/0000-0001-7397-7160</orcidid><orcidid>https://orcid.org/0000-0003-0749-5774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0383
ispartof Journal of clinical medicine, 2021-07, Vol.10 (15), p.3231
issn 2077-0383
2077-0383
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347493
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Automation
Clinical medicine
Deep learning
Disease
Expected values
Glaucoma
Hemoglobin
Morphology
Optic nerve
Optics
Reproducibility
Standard deviation
title Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automated%20Colorimetric%20Analysis%20of%20the%20Optic%20Nerve%20Aided%20by%20Deep%20Learning%20and%20Its%20Association%20with%20Perimetry%20and%20OCT%20for%20the%20Study%20of%20Glaucoma&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Gonzalez-Hernandez,%20Marta&rft.date=2021-07-22&rft.volume=10&rft.issue=15&rft.spage=3231&rft.pages=3231-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm10153231&rft_dat=%3Cproquest_pubme%3E2559437769%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558836513&rft_id=info:pmid/34362014&rfr_iscdi=true