Multimodal pizza-shaped piezoelectric vibration-based energy harvesters
Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently opera...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent material systems and structures 2021-12, Vol.32 (20), p.2505-2528, Article 1045389 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2528 |
---|---|
container_issue | 20 |
container_start_page | 2505 |
container_title | Journal of intelligent material systems and structures |
container_volume | 32 |
creator | Caetano, Virgilio J Savi, Marcelo A |
description | Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently operate over a broadband frequency spectrum. This work proposes a novel multimodal design of a piezoelectric energy harvesting system to harness energy from a wideband ambient vibration source. Circular-shaped and pizza-shaped designs are employed as candidates for the device, comparing their performance with classical beam-shaped devices. Finite element analysis is employed to model system dynamics using ANSYS Workbench. An optimization procedure is applied to the system aiming to seek a configuration that can extract energy from a broader frequency spectrum and maximize its output power. A comparative analysis with conventional energy harvesting systems is performed. Numerical simulations are carried out to investigate the harvester performances under harmonic and random excitations. Results show that the proposed multimodal harvester has potential to harness energy from broadband ambient vibration sources presenting performance advantages in comparison to conventional single-mode energy harvesters. |
doi_str_mv | 10.1177/1045389X211006910 |
format | Article |
fullrecord | <record><control><sourceid>sage_webof</sourceid><recordid>TN_cdi_webofscience_primary_000682020400001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X211006910</sage_id><sourcerecordid>10.1177_1045389X211006910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-db62ca2fd5a8f4b4e0c3ae9592b73310b8fcdb6faadd0dcc5e68219876b114b23</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKs_wFvvsnUm2Y_sURatQsWLgrclyc62Kdvdkmwr3V9vasWLIJ4yYZ5nmHkZu0aYImbZLUKcCJm_c0SANEc4YSNMBEQShTwNdehHB-CcXXi_AkCZgBix2fO26e26q1Qz2dhhUJFfqg1V4UNDRw2Z3lkz2VntVG-7NtLKhy615Bb7yVK5HfmenL9kZ7VqPF19v2P29nD_WjxG85fZU3E3jwyXcR9VOuVG8bpKlKxjHRMYoShPcq4zIRC0rE1gaqWqCipjEkolx1xmqUaMNRdjhse5xnXeO6rLjbNr5fYlQnlIovyVRHDk0fkg3dXeWGoN_XgQKMmBQxwqwML2X4cW3bbtg3rzfzXQ0yPt1YLKVbd1bcjij80-AfX6gQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multimodal pizza-shaped piezoelectric vibration-based energy harvesters</title><source>Access via SAGE</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Caetano, Virgilio J ; Savi, Marcelo A</creator><creatorcontrib>Caetano, Virgilio J ; Savi, Marcelo A</creatorcontrib><description>Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently operate over a broadband frequency spectrum. This work proposes a novel multimodal design of a piezoelectric energy harvesting system to harness energy from a wideband ambient vibration source. Circular-shaped and pizza-shaped designs are employed as candidates for the device, comparing their performance with classical beam-shaped devices. Finite element analysis is employed to model system dynamics using ANSYS Workbench. An optimization procedure is applied to the system aiming to seek a configuration that can extract energy from a broader frequency spectrum and maximize its output power. A comparative analysis with conventional energy harvesting systems is performed. Numerical simulations are carried out to investigate the harvester performances under harmonic and random excitations. Results show that the proposed multimodal harvester has potential to harness energy from broadband ambient vibration sources presenting performance advantages in comparison to conventional single-mode energy harvesters.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X211006910</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Materials Science ; Materials Science, Multidisciplinary ; Science & Technology ; Technology</subject><ispartof>Journal of intelligent material systems and structures, 2021-12, Vol.32 (20), p.2505-2528, Article 1045389</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>24</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000682020400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c284t-db62ca2fd5a8f4b4e0c3ae9592b73310b8fcdb6faadd0dcc5e68219876b114b23</citedby><cites>FETCH-LOGICAL-c284t-db62ca2fd5a8f4b4e0c3ae9592b73310b8fcdb6faadd0dcc5e68219876b114b23</cites><orcidid>0000-0001-5454-5995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X211006910$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X211006910$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,782,786,21828,27933,27934,39267,43630,43631</link.rule.ids></links><search><creatorcontrib>Caetano, Virgilio J</creatorcontrib><creatorcontrib>Savi, Marcelo A</creatorcontrib><title>Multimodal pizza-shaped piezoelectric vibration-based energy harvesters</title><title>Journal of intelligent material systems and structures</title><addtitle>J INTEL MAT SYST STR</addtitle><description>Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently operate over a broadband frequency spectrum. This work proposes a novel multimodal design of a piezoelectric energy harvesting system to harness energy from a wideband ambient vibration source. Circular-shaped and pizza-shaped designs are employed as candidates for the device, comparing their performance with classical beam-shaped devices. Finite element analysis is employed to model system dynamics using ANSYS Workbench. An optimization procedure is applied to the system aiming to seek a configuration that can extract energy from a broader frequency spectrum and maximize its output power. A comparative analysis with conventional energy harvesting systems is performed. Numerical simulations are carried out to investigate the harvester performances under harmonic and random excitations. Results show that the proposed multimodal harvester has potential to harness energy from broadband ambient vibration sources presenting performance advantages in comparison to conventional single-mode energy harvesters.</description><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1LAzEQhoMoWKs_wFvvsnUm2Y_sURatQsWLgrclyc62Kdvdkmwr3V9vasWLIJ4yYZ5nmHkZu0aYImbZLUKcCJm_c0SANEc4YSNMBEQShTwNdehHB-CcXXi_AkCZgBix2fO26e26q1Qz2dhhUJFfqg1V4UNDRw2Z3lkz2VntVG-7NtLKhy615Bb7yVK5HfmenL9kZ7VqPF19v2P29nD_WjxG85fZU3E3jwyXcR9VOuVG8bpKlKxjHRMYoShPcq4zIRC0rE1gaqWqCipjEkolx1xmqUaMNRdjhse5xnXeO6rLjbNr5fYlQnlIovyVRHDk0fkg3dXeWGoN_XgQKMmBQxwqwML2X4cW3bbtg3rzfzXQ0yPt1YLKVbd1bcjij80-AfX6gQ0</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Caetano, Virgilio J</creator><creator>Savi, Marcelo A</creator><general>SAGE Publications</general><general>Sage</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5454-5995</orcidid></search><sort><creationdate>202112</creationdate><title>Multimodal pizza-shaped piezoelectric vibration-based energy harvesters</title><author>Caetano, Virgilio J ; Savi, Marcelo A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-db62ca2fd5a8f4b4e0c3ae9592b73310b8fcdb6faadd0dcc5e68219876b114b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caetano, Virgilio J</creatorcontrib><creatorcontrib>Savi, Marcelo A</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caetano, Virgilio J</au><au>Savi, Marcelo A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal pizza-shaped piezoelectric vibration-based energy harvesters</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><stitle>J INTEL MAT SYST STR</stitle><date>2021-12</date><risdate>2021</risdate><volume>32</volume><issue>20</issue><spage>2505</spage><epage>2528</epage><pages>2505-2528</pages><artnum>1045389</artnum><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently operate over a broadband frequency spectrum. This work proposes a novel multimodal design of a piezoelectric energy harvesting system to harness energy from a wideband ambient vibration source. Circular-shaped and pizza-shaped designs are employed as candidates for the device, comparing their performance with classical beam-shaped devices. Finite element analysis is employed to model system dynamics using ANSYS Workbench. An optimization procedure is applied to the system aiming to seek a configuration that can extract energy from a broader frequency spectrum and maximize its output power. A comparative analysis with conventional energy harvesting systems is performed. Numerical simulations are carried out to investigate the harvester performances under harmonic and random excitations. Results show that the proposed multimodal harvester has potential to harness energy from broadband ambient vibration sources presenting performance advantages in comparison to conventional single-mode energy harvesters.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X211006910</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-5454-5995</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-389X |
ispartof | Journal of intelligent material systems and structures, 2021-12, Vol.32 (20), p.2505-2528, Article 1045389 |
issn | 1045-389X 1530-8138 |
language | eng |
recordid | cdi_webofscience_primary_000682020400001CitationCount |
source | Access via SAGE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Materials Science Materials Science, Multidisciplinary Science & Technology Technology |
title | Multimodal pizza-shaped piezoelectric vibration-based energy harvesters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T04%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20pizza-shaped%20piezoelectric%20vibration-based%20energy%20harvesters&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Caetano,%20Virgilio%20J&rft.date=2021-12&rft.volume=32&rft.issue=20&rft.spage=2505&rft.epage=2528&rft.pages=2505-2528&rft.artnum=1045389&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X211006910&rft_dat=%3Csage_webof%3E10.1177_1045389X211006910%3C/sage_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X211006910&rfr_iscdi=true |