Determining the translational and internal temperatures of isolated metal clusters: A comprehensive approach based on molecular-beam-deflection experiments

An approach to translational, rotational, and vibrational temperatures of small metal clusters (GaMSnN, M = 0,1 and N = 6-16) in a molecular beam from a cryogenically cooled laser vaporization source is presented. The velocity distribution in the molecular beam is measured with a mechanical shutter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2021-07, Vol.104 (1), Article 012820
Hauptverfasser: Fuchs, Thomas M., Rivic, Filip, Schaefer, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physical review. A
container_volume 104
creator Fuchs, Thomas M.
Rivic, Filip
Schaefer, Rolf
description An approach to translational, rotational, and vibrational temperatures of small metal clusters (GaMSnN, M = 0,1 and N = 6-16) in a molecular beam from a cryogenically cooled laser vaporization source is presented. The velocity distribution in the molecular beam is measured with a mechanical shutter at a fixed photoionization delay which gives an estimate of the lower bound of the translational temperature T-rans. These values of T-rans are found to be considerably smaller than the corresponding nozzle temperatures T-nozzie = 16-300 K. The rotational temperature T-rot is estimated from the comparison of an electric deflection experiment with molecular dynamics simulations and from magnetic deflection experiments to be in the range T-rot = 5-20 K for T-nozzie = 16 K. The vibrational temperature T-V1D is studied by comparing magnetic deflection experiments with a microscopic model based on avoided level crossings between vibrational, rotational, and Zeeman energy levels. For T(nozzie )50 K, Tvib Tnozzie is observed, while for lower temperatures, T-V1D > T-nozzle. Thus, T-rans T-or < T-V1D is found at least for N = 11,12 and the lowest nozzle temperature of 16 K.
doi_str_mv 10.1103/PhysRevA.104.012820
format Article
fullrecord <record><control><sourceid>webofscience_cross</sourceid><recordid>TN_cdi_webofscience_primary_000680425800007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000680425800007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-45ebfda3d2a0056bc7f6c958bb0256f4bcfa4f564a4acd6ccfec7a5efad357db3</originalsourceid><addsrcrecordid>eNqNkU1u2zAQhYUiAWq4PkE33AdyKPHHUnaG27QFAjQIkrUwpIY1A4kUSNqJz5LLlo4br7vizPB784jHovha0WVVUXZ9vz3EB9yvlxXlS1rVTU0_FbOay7ZsW8YvznUtPxeLGJ8ppZVoW8nkrHj7hgnDaJ11f0jaIkkBXBwgWe9gIOB6Yl0mjk3CccIAaRcwEm-IjT6D2JMRU77Wwy5mMt6QNdF-nAJu0UW7RwLTFDzoLVEQM-4dGf2AejdAKBXCWPZocn_0JPiaPeyILsUvxaWBIeLi3zkvnm6_P25-lne_f_zarO9KzaRIJReoTA-sr4FSIZVeGalb0ShFayENV9oAN0Jy4KB7qbVBvQKBBnomVr1i84Kd9urgYwxouim_AMKhq2h3jLj7iDgPeHeKOKuuTqoXVN5EbdFpPCtzxrKhvBZNrugq083_0xub3j9g43cusb-EAZji</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determining the translational and internal temperatures of isolated metal clusters: A comprehensive approach based on molecular-beam-deflection experiments</title><source>American Physical Society Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Fuchs, Thomas M. ; Rivic, Filip ; Schaefer, Rolf</creator><creatorcontrib>Fuchs, Thomas M. ; Rivic, Filip ; Schaefer, Rolf</creatorcontrib><description>An approach to translational, rotational, and vibrational temperatures of small metal clusters (GaMSnN, M = 0,1 and N = 6-16) in a molecular beam from a cryogenically cooled laser vaporization source is presented. The velocity distribution in the molecular beam is measured with a mechanical shutter at a fixed photoionization delay which gives an estimate of the lower bound of the translational temperature T-rans. These values of T-rans are found to be considerably smaller than the corresponding nozzle temperatures T-nozzie = 16-300 K. The rotational temperature T-rot is estimated from the comparison of an electric deflection experiment with molecular dynamics simulations and from magnetic deflection experiments to be in the range T-rot = 5-20 K for T-nozzie = 16 K. The vibrational temperature T-V1D is studied by comparing magnetic deflection experiments with a microscopic model based on avoided level crossings between vibrational, rotational, and Zeeman energy levels. For T(nozzie )50 K, Tvib Tnozzie is observed, while for lower temperatures, T-V1D &gt; T-nozzle. Thus, T-rans T-or &lt; T-V1D is found at least for N = 11,12 and the lowest nozzle temperature of 16 K.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.104.012820</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Optics ; Physical Sciences ; Physics ; Physics, Atomic, Molecular &amp; Chemical ; Science &amp; Technology</subject><ispartof>Physical review. A, 2021-07, Vol.104 (1), Article 012820</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000680425800007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c365t-45ebfda3d2a0056bc7f6c958bb0256f4bcfa4f564a4acd6ccfec7a5efad357db3</citedby><cites>FETCH-LOGICAL-c365t-45ebfda3d2a0056bc7f6c958bb0256f4bcfa4f564a4acd6ccfec7a5efad357db3</cites><orcidid>0000-0003-3658-3538 ; 0000-0002-6492-198X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Fuchs, Thomas M.</creatorcontrib><creatorcontrib>Rivic, Filip</creatorcontrib><creatorcontrib>Schaefer, Rolf</creatorcontrib><title>Determining the translational and internal temperatures of isolated metal clusters: A comprehensive approach based on molecular-beam-deflection experiments</title><title>Physical review. A</title><addtitle>PHYS REV A</addtitle><description>An approach to translational, rotational, and vibrational temperatures of small metal clusters (GaMSnN, M = 0,1 and N = 6-16) in a molecular beam from a cryogenically cooled laser vaporization source is presented. The velocity distribution in the molecular beam is measured with a mechanical shutter at a fixed photoionization delay which gives an estimate of the lower bound of the translational temperature T-rans. These values of T-rans are found to be considerably smaller than the corresponding nozzle temperatures T-nozzie = 16-300 K. The rotational temperature T-rot is estimated from the comparison of an electric deflection experiment with molecular dynamics simulations and from magnetic deflection experiments to be in the range T-rot = 5-20 K for T-nozzie = 16 K. The vibrational temperature T-V1D is studied by comparing magnetic deflection experiments with a microscopic model based on avoided level crossings between vibrational, rotational, and Zeeman energy levels. For T(nozzie )50 K, Tvib Tnozzie is observed, while for lower temperatures, T-V1D &gt; T-nozzle. Thus, T-rans T-or &lt; T-V1D is found at least for N = 11,12 and the lowest nozzle temperature of 16 K.</description><subject>Optics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Atomic, Molecular &amp; Chemical</subject><subject>Science &amp; Technology</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU1u2zAQhYUiAWq4PkE33AdyKPHHUnaG27QFAjQIkrUwpIY1A4kUSNqJz5LLlo4br7vizPB784jHovha0WVVUXZ9vz3EB9yvlxXlS1rVTU0_FbOay7ZsW8YvznUtPxeLGJ8ppZVoW8nkrHj7hgnDaJ11f0jaIkkBXBwgWe9gIOB6Yl0mjk3CccIAaRcwEm-IjT6D2JMRU77Wwy5mMt6QNdF-nAJu0UW7RwLTFDzoLVEQM-4dGf2AejdAKBXCWPZocn_0JPiaPeyILsUvxaWBIeLi3zkvnm6_P25-lne_f_zarO9KzaRIJReoTA-sr4FSIZVeGalb0ShFayENV9oAN0Jy4KB7qbVBvQKBBnomVr1i84Kd9urgYwxouim_AMKhq2h3jLj7iDgPeHeKOKuuTqoXVN5EbdFpPCtzxrKhvBZNrugq083_0xub3j9g43cusb-EAZji</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Fuchs, Thomas M.</creator><creator>Rivic, Filip</creator><creator>Schaefer, Rolf</creator><general>Amer Physical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3658-3538</orcidid><orcidid>https://orcid.org/0000-0002-6492-198X</orcidid></search><sort><creationdate>20210730</creationdate><title>Determining the translational and internal temperatures of isolated metal clusters: A comprehensive approach based on molecular-beam-deflection experiments</title><author>Fuchs, Thomas M. ; Rivic, Filip ; Schaefer, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-45ebfda3d2a0056bc7f6c958bb0256f4bcfa4f564a4acd6ccfec7a5efad357db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Optics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Atomic, Molecular &amp; Chemical</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Thomas M.</creatorcontrib><creatorcontrib>Rivic, Filip</creatorcontrib><creatorcontrib>Schaefer, Rolf</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchs, Thomas M.</au><au>Rivic, Filip</au><au>Schaefer, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the translational and internal temperatures of isolated metal clusters: A comprehensive approach based on molecular-beam-deflection experiments</atitle><jtitle>Physical review. A</jtitle><stitle>PHYS REV A</stitle><date>2021-07-30</date><risdate>2021</risdate><volume>104</volume><issue>1</issue><artnum>012820</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>An approach to translational, rotational, and vibrational temperatures of small metal clusters (GaMSnN, M = 0,1 and N = 6-16) in a molecular beam from a cryogenically cooled laser vaporization source is presented. The velocity distribution in the molecular beam is measured with a mechanical shutter at a fixed photoionization delay which gives an estimate of the lower bound of the translational temperature T-rans. These values of T-rans are found to be considerably smaller than the corresponding nozzle temperatures T-nozzie = 16-300 K. The rotational temperature T-rot is estimated from the comparison of an electric deflection experiment with molecular dynamics simulations and from magnetic deflection experiments to be in the range T-rot = 5-20 K for T-nozzie = 16 K. The vibrational temperature T-V1D is studied by comparing magnetic deflection experiments with a microscopic model based on avoided level crossings between vibrational, rotational, and Zeeman energy levels. For T(nozzie )50 K, Tvib Tnozzie is observed, while for lower temperatures, T-V1D &gt; T-nozzle. Thus, T-rans T-or &lt; T-V1D is found at least for N = 11,12 and the lowest nozzle temperature of 16 K.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><doi>10.1103/PhysRevA.104.012820</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3658-3538</orcidid><orcidid>https://orcid.org/0000-0002-6492-198X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9926
ispartof Physical review. A, 2021-07, Vol.104 (1), Article 012820
issn 2469-9926
2469-9934
language eng
recordid cdi_webofscience_primary_000680425800007
source American Physical Society Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Optics
Physical Sciences
Physics
Physics, Atomic, Molecular & Chemical
Science & Technology
title Determining the translational and internal temperatures of isolated metal clusters: A comprehensive approach based on molecular-beam-deflection experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20translational%20and%20internal%20temperatures%20of%20isolated%20metal%20clusters:%20A%20comprehensive%20approach%20based%20on%20molecular-beam-deflection%20experiments&rft.jtitle=Physical%20review.%20A&rft.au=Fuchs,%20Thomas%20M.&rft.date=2021-07-30&rft.volume=104&rft.issue=1&rft.artnum=012820&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.104.012820&rft_dat=%3Cwebofscience_cross%3E000680425800007%3C/webofscience_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true