Thermoelectric properties of the SnS monolayer: Fully ab initio and accelerated calculations

An energetic and dynamical stability analysis of five candidate structures—hexagonal, buckled hexagonal, litharge, inverted litharge, and distorted-NaCl—of the SnS monolayer is performed using density functional theory. The most stable is found to be a highly distorted-NaCl-type structure. The therm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-08, Vol.130 (5), Article 054301
Hauptverfasser: Gupta, Raveena, Dongre, Bonny, Carrete, Jesús, Bera, Chandan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of applied physics
container_volume 130
creator Gupta, Raveena
Dongre, Bonny
Carrete, Jesús
Bera, Chandan
description An energetic and dynamical stability analysis of five candidate structures—hexagonal, buckled hexagonal, litharge, inverted litharge, and distorted-NaCl—of the SnS monolayer is performed using density functional theory. The most stable is found to be a highly distorted-NaCl-type structure. The thermoelectric properties of this monolayer are then calculated using the density functional theory and the Boltzmann transport equation. In terms of phonon scattering, there is a sharp contrast between this monolayer and bulk materials, where normal processes are more important. The calculations reveal that the SnS monolayer has enhanced electrical performance as compared to the bulk phase. As a consequence, high figures of merit Z T ∼ 5 and Z T ∼ 1.36 are predicted at 600 and 300 K, respectively, for the monolayer, ∼ 33 times higher than the Z T of its bulk analog. Therefore, this structure is an interesting candidate for room-temperature thermoelectric applications. A comparison between the fully ab initio results and simpler models based on relaxation times for electrons and phonons highlights the efficiency of computationally inexpensive models. However, ab initio calculations are found to be very important for the prediction of thermal transport properties.
doi_str_mv 10.1063/5.0058125
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000680137000002CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557289860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3439e227d778c3f0fde22f88fe53815687ad2b430acd0abbc1d7bc1078f5a3f23</originalsourceid><addsrcrecordid>eNqN0M1KxDAQAOAgCq4_B98g4EmlOklMk3qT4qogeFBvQknThO3SbWqSKvv2Rit6EMQcEkK-mcwMQgcETgnk7IyfAnBJKN9AMwKyyATnsIlmAJRkshDFNtoJYQlAiGTFDD0_LoxfOdMZHX2r8eDdYHxsTcDO4rgw-KF_wCvXu06tjb_A87Hr1ljVuO3b2Dqs-gYrrVMCr6JpsFadHjuVnvqwh7as6oLZ_zp30dP86rG8ye7ur2_Ly7tMMypixs5ZYSgVjRBSMwu2STcrpTWcScJzKVRD63MGSjeg6lqTRqQNhLRcMUvZLjqc8qbqX0YTYrV0o-_TlxXlXFBZyBySOpqU9i4Eb2w1-Hal_LoiUH0Mr-LV1_CSlZN9M7WzQbem1-bbA0AugTABH4uWbfzst3RjH1Poyf9Dkz6edIJTlm_66vxPRdXQ2L_w7xbeAVUWnoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557289860</pqid></control><display><type>article</type><title>Thermoelectric properties of the SnS monolayer: Fully ab initio and accelerated calculations</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Gupta, Raveena ; Dongre, Bonny ; Carrete, Jesús ; Bera, Chandan</creator><creatorcontrib>Gupta, Raveena ; Dongre, Bonny ; Carrete, Jesús ; Bera, Chandan</creatorcontrib><description>An energetic and dynamical stability analysis of five candidate structures—hexagonal, buckled hexagonal, litharge, inverted litharge, and distorted-NaCl—of the SnS monolayer is performed using density functional theory. The most stable is found to be a highly distorted-NaCl-type structure. The thermoelectric properties of this monolayer are then calculated using the density functional theory and the Boltzmann transport equation. In terms of phonon scattering, there is a sharp contrast between this monolayer and bulk materials, where normal processes are more important. The calculations reveal that the SnS monolayer has enhanced electrical performance as compared to the bulk phase. As a consequence, high figures of merit Z T ∼ 5 and Z T ∼ 1.36 are predicted at 600 and 300 K, respectively, for the monolayer, ∼ 33 times higher than the Z T of its bulk analog. Therefore, this structure is an interesting candidate for room-temperature thermoelectric applications. A comparison between the fully ab initio results and simpler models based on relaxation times for electrons and phonons highlights the efficiency of computationally inexpensive models. However, ab initio calculations are found to be very important for the prediction of thermal transport properties.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0058125</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Applied physics ; Boltzmann transport equation ; Density functional theory ; Dynamic stability ; Monolayers ; Phonons ; Physical Sciences ; Physics ; Physics, Applied ; Room temperature ; Science &amp; Technology ; Stability analysis ; Thermoelectricity ; Transport equations ; Transport properties</subject><ispartof>Journal of applied physics, 2021-08, Vol.130 (5), Article 054301</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>20</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000680137000002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c327t-3439e227d778c3f0fde22f88fe53815687ad2b430acd0abbc1d7bc1078f5a3f23</citedby><cites>FETCH-LOGICAL-c327t-3439e227d778c3f0fde22f88fe53815687ad2b430acd0abbc1d7bc1078f5a3f23</cites><orcidid>0000-0002-1181-1998 ; 0000-0002-7885-7026 ; 0000-0003-0971-1098 ; 0000-0002-5226-4062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0058125$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,39263,76389</link.rule.ids></links><search><creatorcontrib>Gupta, Raveena</creatorcontrib><creatorcontrib>Dongre, Bonny</creatorcontrib><creatorcontrib>Carrete, Jesús</creatorcontrib><creatorcontrib>Bera, Chandan</creatorcontrib><title>Thermoelectric properties of the SnS monolayer: Fully ab initio and accelerated calculations</title><title>Journal of applied physics</title><addtitle>J APPL PHYS</addtitle><description>An energetic and dynamical stability analysis of five candidate structures—hexagonal, buckled hexagonal, litharge, inverted litharge, and distorted-NaCl—of the SnS monolayer is performed using density functional theory. The most stable is found to be a highly distorted-NaCl-type structure. The thermoelectric properties of this monolayer are then calculated using the density functional theory and the Boltzmann transport equation. In terms of phonon scattering, there is a sharp contrast between this monolayer and bulk materials, where normal processes are more important. The calculations reveal that the SnS monolayer has enhanced electrical performance as compared to the bulk phase. As a consequence, high figures of merit Z T ∼ 5 and Z T ∼ 1.36 are predicted at 600 and 300 K, respectively, for the monolayer, ∼ 33 times higher than the Z T of its bulk analog. Therefore, this structure is an interesting candidate for room-temperature thermoelectric applications. A comparison between the fully ab initio results and simpler models based on relaxation times for electrons and phonons highlights the efficiency of computationally inexpensive models. However, ab initio calculations are found to be very important for the prediction of thermal transport properties.</description><subject>Applied physics</subject><subject>Boltzmann transport equation</subject><subject>Density functional theory</subject><subject>Dynamic stability</subject><subject>Monolayers</subject><subject>Phonons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Room temperature</subject><subject>Science &amp; Technology</subject><subject>Stability analysis</subject><subject>Thermoelectricity</subject><subject>Transport equations</subject><subject>Transport properties</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0M1KxDAQAOAgCq4_B98g4EmlOklMk3qT4qogeFBvQknThO3SbWqSKvv2Rit6EMQcEkK-mcwMQgcETgnk7IyfAnBJKN9AMwKyyATnsIlmAJRkshDFNtoJYQlAiGTFDD0_LoxfOdMZHX2r8eDdYHxsTcDO4rgw-KF_wCvXu06tjb_A87Hr1ljVuO3b2Dqs-gYrrVMCr6JpsFadHjuVnvqwh7as6oLZ_zp30dP86rG8ye7ur2_Ly7tMMypixs5ZYSgVjRBSMwu2STcrpTWcScJzKVRD63MGSjeg6lqTRqQNhLRcMUvZLjqc8qbqX0YTYrV0o-_TlxXlXFBZyBySOpqU9i4Eb2w1-Hal_LoiUH0Mr-LV1_CSlZN9M7WzQbem1-bbA0AugTABH4uWbfzst3RjH1Poyf9Dkz6edIJTlm_66vxPRdXQ2L_w7xbeAVUWnoI</recordid><startdate>20210807</startdate><enddate>20210807</enddate><creator>Gupta, Raveena</creator><creator>Dongre, Bonny</creator><creator>Carrete, Jesús</creator><creator>Bera, Chandan</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1181-1998</orcidid><orcidid>https://orcid.org/0000-0002-7885-7026</orcidid><orcidid>https://orcid.org/0000-0003-0971-1098</orcidid><orcidid>https://orcid.org/0000-0002-5226-4062</orcidid></search><sort><creationdate>20210807</creationdate><title>Thermoelectric properties of the SnS monolayer: Fully ab initio and accelerated calculations</title><author>Gupta, Raveena ; Dongre, Bonny ; Carrete, Jesús ; Bera, Chandan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3439e227d778c3f0fde22f88fe53815687ad2b430acd0abbc1d7bc1078f5a3f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Boltzmann transport equation</topic><topic>Density functional theory</topic><topic>Dynamic stability</topic><topic>Monolayers</topic><topic>Phonons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Room temperature</topic><topic>Science &amp; Technology</topic><topic>Stability analysis</topic><topic>Thermoelectricity</topic><topic>Transport equations</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Raveena</creatorcontrib><creatorcontrib>Dongre, Bonny</creatorcontrib><creatorcontrib>Carrete, Jesús</creatorcontrib><creatorcontrib>Bera, Chandan</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Raveena</au><au>Dongre, Bonny</au><au>Carrete, Jesús</au><au>Bera, Chandan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric properties of the SnS monolayer: Fully ab initio and accelerated calculations</atitle><jtitle>Journal of applied physics</jtitle><stitle>J APPL PHYS</stitle><date>2021-08-07</date><risdate>2021</risdate><volume>130</volume><issue>5</issue><artnum>054301</artnum><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>An energetic and dynamical stability analysis of five candidate structures—hexagonal, buckled hexagonal, litharge, inverted litharge, and distorted-NaCl—of the SnS monolayer is performed using density functional theory. The most stable is found to be a highly distorted-NaCl-type structure. The thermoelectric properties of this monolayer are then calculated using the density functional theory and the Boltzmann transport equation. In terms of phonon scattering, there is a sharp contrast between this monolayer and bulk materials, where normal processes are more important. The calculations reveal that the SnS monolayer has enhanced electrical performance as compared to the bulk phase. As a consequence, high figures of merit Z T ∼ 5 and Z T ∼ 1.36 are predicted at 600 and 300 K, respectively, for the monolayer, ∼ 33 times higher than the Z T of its bulk analog. Therefore, this structure is an interesting candidate for room-temperature thermoelectric applications. A comparison between the fully ab initio results and simpler models based on relaxation times for electrons and phonons highlights the efficiency of computationally inexpensive models. However, ab initio calculations are found to be very important for the prediction of thermal transport properties.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><doi>10.1063/5.0058125</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1181-1998</orcidid><orcidid>https://orcid.org/0000-0002-7885-7026</orcidid><orcidid>https://orcid.org/0000-0003-0971-1098</orcidid><orcidid>https://orcid.org/0000-0002-5226-4062</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-08, Vol.130 (5), Article 054301
issn 0021-8979
1089-7550
language eng
recordid cdi_webofscience_primary_000680137000002CitationCount
source AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Applied physics
Boltzmann transport equation
Density functional theory
Dynamic stability
Monolayers
Phonons
Physical Sciences
Physics
Physics, Applied
Room temperature
Science & Technology
Stability analysis
Thermoelectricity
Transport equations
Transport properties
title Thermoelectric properties of the SnS monolayer: Fully ab initio and accelerated calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20properties%20of%20the%20SnS%20monolayer:%20Fully%20ab%20initio%20and%20accelerated%20calculations&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Gupta,%20Raveena&rft.date=2021-08-07&rft.volume=130&rft.issue=5&rft.artnum=054301&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0058125&rft_dat=%3Cproquest_webof%3E2557289860%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557289860&rft_id=info:pmid/&rfr_iscdi=true